
Lem Manual

June 18, 2020

Contents

1 Introduction 3

1.1 Supported software . 4

2 Installation 4

2.1 Lem binary . 4

2.2 Backend libraries . 4

2.3 Documentation . 4

2.3.1 Library documentation . 4

2.3.2 Syntax . 4

2.3.3 Source code documentation . 4

2.3.4 Old Manual . 5

3 Invoking Lem 5

3.1 Backends . 5

3.2 Dependency Resolution / Libraries . 6

3.3 Output Directory . 6

3.4 Auxiliary Output . 6

3.5 Updating Existing Output . 6

3.6 Warnings . 7

3.7 Miscellaneous Command-Line Options . 8

3.8 Command-line Options for Debugging . 8

4 Backends 8

4.1 OCaml . 8

4.1.1 Compilation . 8

4.1.2 Auxiliary Files . 8

4.2 HOL4 . 9

4.2.1 Compilation . 9

4.2.2 Auxiliary Files . 9

4.3 Isabelle/HOL . 9

1

4.3.1 Generating Isabelle Library . 9

4.3.2 Adapting Isabelle Imports . 9

4.3.3 Auxiliary Files . 9

4.3.4 Automatic Proof Tools / Counter Example Generation 10

4.4 Coq . 10

4.5 LaTeX . 10

4.5.1 LaTeX Macro Names . 10

4.5.2 LaTeX Macro Usage . 11

4.5.3 Libraries . 11

4.6 HTML . 11

5 Lem-library 11

5.1 General Design . 12

5.2 Library documentation . 12

6 Writing your own Lem files 12

6.1 Header . 12

6.1.1 Importing Library . 12

6.1.2 Setting Module Name . 12

6.1.3 Importing Modules . 13

6.1.4 Opening / Including Modules . 13

6.2 Constant definitions . 13

6.2.1 Simple definitions . 13

6.2.2 Target specific definitions . 13

6.2.3 Inlining . 14

6.2.4 Recursive Definitions . 14

6.2.5 Termination Proofs . 14

6.3 Type definitions . 14

6.4 Assertions / Lemmata / Theorems . 15

6.5 Renaming . 15

7 The Lem Language 15

7.1 Metavariables and Identifiers . 15

7.2 Literals . 16

7.3 Types . 16

7.4 Patterns . 16

7.5 Expressions . 16

7.6 Inductive Relation Definitions . 17

7.7 Type Definitions . 18

7.8 Type Schemes . 18

7.9 Target Descriptions . 19

2

7.10 Import, Open, and Include . 19

7.11 Lemmas, Assertions, and Theorems . 19

7.12 Unused? . 19

7.13 Target Representation Declarations . 20

7.14 Value Definitions . 20

7.15 Class and Instance Declarations . 21

7.16 Value Type Specifications . 21

7.17 Top-level Definitions . 21

8 Linking to existing Backend Libraries 21

8.1 Target specific imports . 22

8.2 Simple Target Representations . 22

8.3 Target Representations of Types . 22

8.4 Infix Operations . 22

8.5 Special Target Representations . 23

9 Type classes 23

9.1 Type class for Equality . 23

9.2 Type classes for Sets and Maps . 23

9.3 Other Standard Library Type Classes . 24

10 Refactoring 24

10.1 Types . 25

10.2 Functions / Fields . 25

10.3 Modules . 25

1 Introduction

Lem is a lightweight tool for writing, managing, and publishing large scale semantic definitions. It is
also intended as an intermediate language for generating definitions from domain-specific tools, and for
porting definitions between interactive theorem proving systems (such as Coq, HOL4, and Isabelle).

The language combines features familiar from functional programming languages with logical constructs.
From functional programming languages we take pure higher-order functions, general recursion, recursive
algebraic datatypes, records, lists, pattern matching, parametric polymorphism, a simple type class
mechanism for overloading, and a simple module system. To these we add logical constructs familar
in provers: universal and existential quantification, sets (including set comprehensions), relations, finite
maps, inductive relation definitions, and lemma statements. Then there are facilities to let the user
tune how Lem definitions are mapped into the various targets (by declaring target representations and
controlling notation, renaming, inlining, and type classes), to generate witness types and executable
functions from inductive relations, and for assertions.

Lem typechecks its input and can generate executable OCaml, theorem prover definitions in Coq, HOL4
and Isabelle/HOL, typeset definitions in LaTeX, and simple HTML.

3

1.1 Supported software

Lem is tested against the following versions of the backend software:

• OCaml: 3.12.1. and 4.00.0
• Coq: 8.4pl3 and 8.4pl2
• Isabelle: Isabelle-2013-2
• HOL: HOL4 Kananaskis 9

Older or newer versions of this software may work correctly with Lem, but are unsupported.

2 Installation

2.1 Lem binary

See the github README.

2.2 Backend libraries

See the github README.

2.3 Documentation

See the github README for papers and the Lem manual

The manual and its sources can be found in subdirectory doc. It’s written in Markdown and tested with
Pandoc 1.9.1.1. However, it tries to avoid Pandoc specific extensions of Markdown.

Running make in subdirectory doc invokes Pandoc to generate html- and pdf-versions of the manual.
Since the manual is written in Markdown, you can easily read it with the text-editor of your choice as
well.

2.3.1 Library documentation

Similar to generating backend libraries, one can also generate documentation for the libraries by running
make tex-libs. This generates a file tex-lib/lem-libs.pdf. In order to not pretty print the whole
library, but just get interface information, one can use Lem’s command line argument print env. Run-
ning lem -print env library/pervasives extra.lem loads all of the libraries and afterwards prints
the environment in a concise form.

2.3.2 Syntax

The input syntax of Lem is described later in this document. The syntax is defined using the Ott tool,
and the language definition can be found in file language/lem.ott. You don’t need Ott to compile or
use Lem. However, if Ott is installed, the makefile in directory language can be used to generate a PDF
documenting the syntax of Lem. A snapshot of that is in doc/lem.pdf.

2.3.3 Source code documentation

The makefile in Lem’s root directory contains targets to generate Ocamldoc documentation for Lem’s
sources. Running make lem-doc generates

• directory html-doc (the source documentation as HTML)
• file lem-doc.pdf (the source documentation as PDF)
• file lem-doc-dep.pdf (a dependency graph as PDF)

4

http://johnmacfarlane.net/pandoc/
http://www.cl.cam.ac.uk/~pes20/ott/

2.3.4 Old Manual

Lem’s old manual can be found in subdirectory manual. It is now out of date, though.

3 Invoking Lem

The most basic usage of Lem is running a command like

lem input1.lem ... inputn.lem -target

This command loads the lem files input1.lem through inputn.lem and outputs their translation to
target target in the same directory as the input files. Multiple target arguments are possible. For
example

lem name1.lem name2.lem -ocaml -hol -isa -coq

creates the following files (assuming there are no type errors, and no explicit renaming in the source
files):

• name1.ml and name2.ml for target ocaml
• name1Script.sml, name2Script.sml for target hol
• Name1.thy, Name2.thy for target isa
• name1.v, name2.v for target coq

There are auxiliary files generated as well, which are discussed later.

Lem has many command line options to configure its behaviour. Running lem --help provides a short
documentation of these options. The most common ones are explained below.

3.1 Backends

The following command line options tell Lem to generate output for certain backends. They are discussed
in more detail in the corresponding backend sections later. Notice that multiple backend options can be
given in order to generate output for more than one backend.

• -ocaml generate OCaml output

• -hol generate HOL4 output

• -isa generate Isabelle/HOL output

• -coq generate Coq output

• -tex generate LaTeX output for each module separately. This means that for each input file, a
separate output .tex file is created. These files contain the pretty-printed input.

• -tex all output filename.tex generate LaTeX output in a single file. All input files are added
as separate sections to the file output filename.tex and a table of contents is added before.

• -html generate HTML output for each module separately

• -lem generate Lem output after simple transformations. This is used for refactoring Lem develop-
ments.

5

3.2 Dependency Resolution / Libraries

Lem by default searches the given input files for explicit import statements. It then tries to load the
imported modules from either the directory of the files importing them or from one of the library
directories. Lem only generates output for the files given explicitly as arguments. No output is generated
for automatically imported files.

By default Lem uses the directory library as its library directory. This can be changed by either
setting the environment-variable LEMLIB or by using the command-line argument -lib. Multiple usages
of -lib allow using more than one library directory. Sometimes, users might be interested when a
module is imported and from which file. Setting the warning-level of auto-imports to warn via the
command-line option -wl auto import warn allows to keep track of auto-imports. Setting it to err via
-wl auto import err turns off automatic imports and therefore requires the user to explicitly provide
all needed input files on the command line. Notice however, that dependency resolution still happens
between these explicitly given files and they might be processed in a different order than specified.
To turn off resorting the explicit inputs, one can use the command-line flag -no dep reorder. When
providing all inputs explicitly, it might be useful to turn off output for some of them via the command-line
argument -i.

3.3 Output Directory

By default, output files are generated in the same directory as the corresponding input file. This remains
the case even if input files come from multiple directories. For example

lem -tex dir1/file1.lem dir2/file2.lem

generates the files dir1/File1.tex and dir2/File2.tex. The command line option -outdir allows one
to specify a different output directory. When using -outdir all explicitly, the given input files need to
live in the same directory.

3.4 Auxiliary Output

Lem generates two kinds of output files, the main output and auxiliary outputs. Auxiliary outputs do
not contain the main specification, but some related content that might be useful to the user. Examples
of such auxiliary output are templates for termination proofs of recursive functions. Other are proof
obligations generated by explicit lemmata as well as automatic consistency checks. This kind of auxiliary
output should be copied by the user manually to some other files and be used there in whatever way the
user thinks best. However, there is also auxiliary output that can be processed completely automatically.
Examples are assertions, which for the Ocaml and HOL backends generate executable tests.

By default Lem generates all available auxiliary output. The command-line option -auxiliary level

can be used to control this behaviour. By default it is set to full. The command line option
-auxiliary level auto causes only automatically processable output like testing code of assertions to
be generated. -auxiliary level none turns off the generation of auxiliary files. One can also turn off
the generation of the main files and only generate the auxiliary ones using -only auxiliary.

3.5 Updating Existing Output

When using multi-file Lem developments, it might be handy to only update the output files that really
changed. This allows the build-tools of backends like OCaml, HOL, Isabelle or Coq to only recompile
files that really need to. Lem supports this via the command line option -only changed output.

6

3.6 Warnings

Lem can print warning messages about various things. Common warnings are about unused variables,
name clashes that required automatic renaming of some entities or the need for pattern compilation, but
there are many more. Warning options start with the prefix wl. They can be set to 4 different values

• ign ignore this warning and do nothing
• warn print a normal warning message and continue. This is the default for most options.
• verb print a verbose warning message and continue
• err stop with a verbose error message

The option -wl controls all warning messages at once. This is useful to turn off all warning messages
(-wl ign). It can also be used to first turn all messages off and then activate selected ones again to
concentrate on certain problems with the input. -wl ign -wl rename warn causes - for example - Lem
to print only warnings about renamings of constants. So, the user can look the renamings up and provide
manual renamings, which generally look better than the auto-generated ones. Later, when there should
be no auto-renamings any more, one could enforce this property by using -wl rename err.

There are currently the following warnings. Since this list changes frequently, it is recommended to check
the warning-options for your version of Lem via lem --help. This also prints the default setting for
these warning options.

• -wl warning level of all warnings

• -wl gen warning level of miscellaneous warnings

• -wl amb code warning level of ambiguous code. This means code that is can easily confuse users
and should perhaps be written more clearly.

• -wl auto import warning level of automatically imported modules. Setting this option to err

is used to turn off automatic imports. Together with ‘-no dep reorder it effectively turns off
dependency resolution.

• -wl comp message warning level of compile messages. Compile messages are messages associated
with certain functions. They contain information for the user how to use these functions. Such
messages might point out that a function is not supported by certain backends or that its semantics
might be underspecified of deliberately different for different backends.

• -wl inst over warning level of overridden instance declarations

• -wl no dec eq warning level of equality of type is undecidable

• -wl pat comp warning level of pattern compilation. This causes a warning message if certain
patterns are not natively supported by a backend and therefore need pattern compilation. Since
pattern compilation changes the input significantly, sometimes users might prefer to write the
pattern match in a style supported by the backend.

• -wl pat exh warning level of non-exhaustive pattern matches

• -wl pat fail warning level of failed pattern compilation

• -wl pat red warning level of redundant patterns

• -wl rename warning level of automatic renamings

• -wl resort warning level of re-sorted record fields and function clauses. Some backends require
the fields of a record to be given in the same order as in the definition of the record type. Lem
is more relaxed but warns if it needs to re-sort. Similarly, some backends require the clauses of
mutually recursive function definitions to be grouped together, which might require resorting.

• -wl unused vars warning level of unused variables. To turn off this warning of a certain variable,
one can change the variable name to start with an underscore. For example, for a variable x no
warning is issued.

7

3.7 Miscellaneous Command-Line Options

• -print env print the environment signature on stdout. This feature gives a very brief overview of
the current state and allows for example to get a short list of all the types and functions defined
in a certain module.

• -add loc annots add location annotations to the output.

• -v print Lem’s version

3.8 Command-line Options for Debugging

• -ident generate the input on stdout. This is used for debugging Lem.

• -debug print a backtrace for all errors. This is used for debugging Lem. In order for it to work,
Lem needs to be compiled in debug mode (which is done by default).

• -ident pat compile activates pattern compilation for the identity backend. This is used for de-
bugging.

• -ident dict passing activates dictionary passing transformations for the identity backend. This
is used for debugging.

4 Backends

4.1 OCaml

The command line option -ocaml instructs Lem to generate OCaml output. A module with name
Mymodule generates a file mymodule.ml and possibly mymoduleAuxiliary.lem.

4.1.1 Compilation

Lem-generated OCaml relies on some Lem-specific OCaml code as well as OCaml versions of the Lem li-
brary. Calling make ocaml-libs in Lem’s main directory generates these files in subdirectory ocaml lib

and compiles them.

When compiling Lem-generated OCaml-code, it needs to be linked with the files in directory ocaml lib.
To make this simpler, an OCaml-package Lem (using extract.cma) is defined in this directory. One can
for example compile a file name1.ml by

ocamlc -I path_to_lem/ocaml-lib/_build -o name extract.cma name1.ml

or, using ocamlbuild and findlib, by

export OCAMLPATH=/absolute/path/to/lem/ocaml-lib:$OCAMLPATH

ocamlbuild -libs nums -use-ocamlfind -pkg lem name.native

4.1.2 Auxiliary Files

OCaml auxiliary files do not need modifications by the user. They contain tests generated from assertions
in the input files. When compiled as described above and run as standalone programs, OCaml auxiliary
files execute the tests and print the results.

8

4.2 HOL4

The command line option -hol instructs Lem to generate HOL4 output. A module with name Mymodule

generates a file mymoduleScript.sml and possibly mymoduleAuxiliaryScript.sml.

4.2.1 Compilation

Lem-generated HOL theories depend on some Lem-specific HOL4 code as well as HOL4 versions of
the Lem library. Calling make hol-libs in Lem’s main directory generates these files in subdirectory
hol lib and compiles them using Holmake. During this compilation process a heap with name lemheap is
generated. It is recommended to use this heap for your own HOL4 development based on Lem-generated
files. Using the generated files in hol-libs directly is possible as well, though. In order to use the heap,
add the following line to the Holmakefile of the directory, where your HOL4-files are stored:

HOLHEAP = path_to_lem/hol-lib/lemheap

A template Holmakefile file using other useful options as well can be found in directory library.

4.2.2 Auxiliary Files

HOL4 auxiliary files contain both executable tests generated from assertions as well as templates for
termination proofs and lemmata that need manual labour by the user. The command line option
-auxiliary level auto allows to generate only the executable tests.

4.3 Isabelle/HOL

The command line option -isa instructs Lem to generate Isabelle/HOL output. A module with name
Mymodule generates a files Mymodule.thy and possibly MymoduleAuxiliary.thy.

4.3.1 Generating Isabelle Library

Lem-generated Isabelle theories depend on some Lem-specific Isabelle theories as well as Isabelle versions
of the Lem library. Calling make isa-libs in Lem’s main directory generates these files in subdirectory
isa lib. In contrast to the HOL and OCaml libraries the generation of these libraries does not trigger
automatic tests. If you want to check the sanity of the library, please use make isa-lib-tests in
subdirectory library. This creates a directory library/isa-build-dir and the library auxiliary files
within this directory. Moreover, there is a file LemTests.thy, which imports all other files and is
therefore useful for testing all these files in Isabelle.

4.3.2 Adapting Isabelle Imports

The theory import-statement in the header of generated Isabelle files contains the absolute path to
Lem’s library directory. If you move the library directory, this path needs adapting. If you want to use
a backend specific import statement in your own Lem development, that imports some theory in the
library directory, you can use the variable $LIB DIR as in the following example

open import {isabelle} ‘$LIB_DIR/Lem‘

4.3.3 Auxiliary Files

Isabelle auxiliary contain both executable tests generated from assertions as well as templates for termi-
nation proofs and lemmata that need manual labour by the user. In contrast to the auxiliary output of
HOL, the templates for lemmata and termination proofs make use of Isabelle’s automation and therefore
often succeed without user intervention. Therefore, using the command line option -auxiliary level

auto in order to generate only code for assertions is possible but not imperative.

9

4.3.4 Automatic Proof Tools / Counter Example Generation

The auxiliary files contain templates for lemmata that use Isabelle’s automation. Therefore these tem-
plates might be useful even for users not familiar with Isabelle, who want to use tools like automatic
counter example generation.

The Lem-lemma

lemma unzip_zip:

forall l1 l2. unzip (zip l1 l2) = (l1, l2)

is for example translated to the following Isabelle code:

lemma unzip_zip:

"! l1 l2. list_unzip (zip l1 l2) = (l1, l2)"

(* try *) by auto

The automated proof attempt by the auto method fails. If the user removes the comment around try,
various automated methods are run to either prove the lemma or find a counterexample. These methods
include running external SMT and first order provers, internal natural deduction tools as well as a
sophisticated counter example generator. In this example, Isabelle quickly finds a counterexample:

Nitpick found a counterexample for card ’a = 2 and card ’b = 2:

Skolem constants: l1 = [a1], l2 = []

While this is a trivial example, counterexamples and proofs are also found for more interesting cases. So,
writing lemmata in Lem and translating them to Isabelle might be useful, even if you are not familiar
with Isabelle.

4.4 Coq

4.5 LaTeX

The command line option -tex instructs Lem to generate LaTeX output. A module with name Mymodule
generates a files Mymodule.tex, Mymodule-inc.tex and Mymodule-use inc.tex. No auxiliary files are
generated. The generated LaTeX output depends on the style-file lem.sty in directory tex-lib.

The file Mymodule.tex contains a pretty-printed version of the original input file. Mymodule-inc.tex

defines LaTeX macros that can be used to type-set single definitions inside your own developments.
Mymodule-use inc.tex uses these macros to mimic the behaviour of Mymodule.tex. It is useful, since
it essentially is a list of all the defined macros in the order they appear in the input file.

The command-line-option -tex generates separate LaTeX files for each input file. If using the
option -tex all my output, Lem generates the files my output.tex, my output-inc.tex and
my output-use inc.tex, which contain representations / macros for all input files.

4.5.1 LaTeX Macro Names

The ...-inc.tex files contain macros that allow type-setting single definitions from the original input.
As far as possible, the names of the macros are derived from the name of the defined entity. We have

• the definition of a function myfun generates a macro \LEMmyfun
• the definition of a type mytype generates a macro \LEMTypeMytype
• the definition of a relation myrel generates a macro \LEMmyrel
• a val-specification of a function myfun generates a macro \LEMValspecMyfun

10

Other entities like declarations, class definitions etc. do not currently get predictable names. Please have
a look at the content of the ...-use inc.tex or ...-inc.tex file to figure out the generated name for
these.

If the names of macros derived by the scheme above clash, a number is added at the end. Because
LaTeX does not allow digets in macro names, these numbers are expressed as English words. Name
clashes happen if there are several definitions of a function, which sometimes happens since you might
prefer a different definition depending on the target. If there is a val-specification for a function myfun, as
well as an OCaml-specific, a HOL and Isabelle-specific and Coq-specific one, these generates the macros
\LEMValspecMyfun, \LEMmyfun, \LEMmyfunZero, \LEMmyfunOne, \LEMmyfunTwo.

4.5.2 LaTeX Macro Usage

By default, macros print their full definition without any preceding comment, but with a LaTeX label

that allows referring to that definition. The generated LaTeX macros accept an optional argument that
changes this behaviour. So, for example \LEMmyfun prints the definition of the function myfun, whereas
\LEMmyfun[name] prints only the type-set name of myfun. There are the following arguments available:

• default same as not providing an argument, alias for def
• def print a label followed by the full definition excluding the preceding comment
• defWithComment print a label followed by the full definition including the preceding comment
• name print the typeset name of the definition. For definitions defining more than one constant of

type, as well as for Lem statements not defining anything, this is empty
• comment print the preceding comment
• commentPre alias for comment
• commentPost print the comment directly after the definition (usually empty)
• core print the core of a definition. Usually that’s the right hand side of the definition, but might

vary depending on the type of Lem-statement that generated the macro
• label print the label that is used by def and defWithComment.

If you want to learn about details or add your own argument values, please have a look at the definition
of macro \lemdefn in file tex-lib/lem.sty.

4.5.3 Libraries

Running make tex-libs in Lem’s main directory generates LaTeX output for Lem’s library. By running
Pdflatex on this output a file tex-lib/lem-libs.pdf is generated, which can be used as library doc-
umentation. Moreover, there are also lem-libs.tex, lem-libs-inc.tex and lem-libs-use inc.tex,
which can be used as described above.

4.6 HTML

The command line option -html instructs Lem to generate HTML output. A module with name
Mymodule generates a file Mymodule.html. No auxiliary files are generated.

5 Lem-library

Lem comes with a default library of types and constants. This library can be found in directory library.
It contains collections such as lists, sets and maps, basic data types such as disjoint sums, optional types,
booleans and tuples, useful combinators on functions, and a library for working with relations.

11

5.1 General Design

The library follows Haskell’s library in terms of names of constants, types and modules. The library is
separated into two sets of modules: the main and extra modules. The main hierarchy of files contain
total, terminating functions that we believe are well-specified enough to be portable across all backends.
All other functions are are placed in the extra modules. For example, the library file function.lem

includes various useful combinators such as flip and const. The function extra.lem file, on the other
hand, contains the constant THE with type forall ’a. (’a --> bool) --> maybe ’a, inexpressible
in Coq.

Lem leaves the choice of using the main library or the extended library to the user. The module
Pervasives contains the main part of the library, Pervasives extra the extra part. The first line
of a common Lem file is usually open import Pervasives or open import Pervasives extra, which
imports and opens either the main or the extra library.

5.2 Library documentation

For an overview of the Lem library, please generate the pdf-file tex-lib/lem-libs.pdf by run-
ning make tex-libs. If you are just interested in the interface, consider running lem -print env

library/pervasives extra.lem.

6 Writing your own Lem files

Lem’s syntax broadly follows OCaml syntax, while the libraries follow the Haskell libraries. Here, only a
few selected points of Lem’s syntax and its features are discussed. To learn more about its syntax, please
have a look at the next section and at the file doc/lem.pdf. Another possibility is having a look at the
Lem-library in the library-directory or at the tests in directory tests, especially tests/backends.

6.1 Header

6.1.1 Importing Library

A Lem file usually starts with importing the appropriate library. Without such an import, even very
simple operations like boolean conjunction are not available. The user thus has the choice of either
importing the main library or the extended library. The main library contains total, terminating functions
that we believe are well-specified enough to be portable across all backends. All other functions are placed
in the extended library.

The main library is imported by

open import Pervasives

and the extended one by

open import Pervasives_extra

6.1.2 Setting Module Name

Each Lem file defines a top-level module. A file with name mymodule.lem creates a Lem module
Mymodule. By default this is also the name of the module for all backends. It is however possible
(and sometimes necessary) to rename modules for backends. For example, Lem’s library contains a file
set.lem, which defines the Lem module Set. In order to avoid clashes with the existing HOL and
Isabelle theories called set, it is however renamed to lem set for these backends. This is done via the
command

12

declare {isabelle;hol} rename module = lem_set

Notice that in contrast to renaming functions, no module name is used behind the keyword module.
This causes the current module to be renamed. It is also possible to rename other modules. However,
this should only be used for submodules defined in the same file as the renaming, because otherwise the
module might have different names in different files referring to it.

6.1.3 Importing Modules

Lem provides dependency resolution, but only for explicitly imported modules. Using a statement like

import Mymodule

causes Lem to search for a file mymodule.lem in the current directory as well as in a list of given library
directories. If such a file is found, it is automatically processed by Lem and it’s contents are used to
generate a Lem module Mymodule. Import statements do not need to, but are usually placed at the top
of Lem files.

6.1.4 Opening / Including Modules

A function myfun from a module Mymod is usually accessible by Mymod.myfun. Lem allows explicitly
opening modules via open Mymod. After such a statement myfun can be used instead of Mymod.myfun.

When using open Mymod inside a module Mymod2, it only affects the state inside this current module
Mymod2. It does not change the outside view of Mymod2. If you want to be all functions Mymod.myfun

also available as Mymod2.myfun, one can use include instead of open. Including is mostly useful for
writing libraries.

Often one wants to import and open a module at the same time. Therefore open import Mymodule

and include import Mymodule are hands for first importing and then opening / including a module.
Similarly, Lem allows opening/including/importing multiple modules with just one statement.

6.2 Constant definitions

6.2.1 Simple definitions

A simple function definition is Lem is very similar to an OCaml top-level definition. It is of the form

let fun_name arg1 ... argn = rhs_exp

The arguments are allowed to be arbitrary Lem-patterns. The right-hand side an arbitrary expression
that uses the variables bound by the arguments.

6.2.2 Target specific definitions

Sometimes you might want to use different definitions for different targets. In order to do that the
functions needs to be introduced via a val-specification first:

val fun_name : type-scheme

After this specification multiple target-specific definitions of the form

let {target1; ...; targetn} fun_name arg1 ... argn = rhs_exp

13

or let ˜{target1; . . . ; targetn} fun name arg1 . . . argn = rhs exp

are allowed. Thereby {target1; ...; targetn} represents the set of the given targets, whereas
~{target1; ...; targetn} represents the set of all targets except the given ones. The targets intended
to just typeset the Lem input file, i.e. the LaTeX and HTML do not require definitions and providing
one does not change their behaviour. All other targets for which the function should be used, require a
definition.

6.2.3 Inlining

Lem allows inlined constant definitions. These definitions are essentially macro expansions. For example
consider an emptiness check for List.

let inline isEmptyList l = (l = [])

It is a simple, straightforward definition, that you might not want to generate special target definitions
for. An inline definition allows using the function isEmptyList in Lem. It is also used in the HTML,
Latex, Identity and Refactoring backends. All other backends replace it with the right hand side though.
So, Lem would not define HOL4 function for isEmptyList, but replace every occurrence of it with the
definition.

In order to allow this inlining, the definition has to be simple. Arguments are just allowed to be variables
and inlined definition may not be recursive. Moreover, they may not have any type-class constraints
attached.

If a val-specification is provided first, it is possible to inline constants only for certain targets and generate
proper definitions for other targets. For this, syntax similar to the following example is used:

let inline {hol} isEmptyList l = (l = [])

6.2.4 Recursive Definitions

Lem allows to define recursive and even mutually recursive functions by using the keyword let rec. For
example to define (stupidly) functions even and odd, one can use

let rec even (0:nat) = true

and odd 0 = false

and even (n + 1) = not (odd n)

and odd (n + 1) = not (even n)

6.2.5 Termination Proofs

Recursive definitions require termination (or well-foundedness) proofs in the theorem prover backends.
Isabelle and HOL4 are able to delay these proofs. The user has to fill in these proofs then, before us-
ing the defined functions. For simple functions like the ones in the example, this can be annoying. A
termination argument declaration can therefore be used to tell Isabelle and HOL to try automatic ter-
mination proofs. If multiple functions are defined in a single, mutually recursive definition, an automatic
termination proof is only attempted, if automatic termination is declared for all defined functions.

declare {hol; isabelle} termination_argument even = automatic

declare {hol; isabelle} termination_argument odd = automatic

6.3 Type definitions

Note that when defining new types in Lem it may be necessary to instantiate some of the basic type
classes, as described in the Type Classes section below.

14

6.4 Assertions / Lemmata / Theorems

Lem allows the user to write assertions, lemmata and theorems. These are named boolean expressions,
which the user desires to be true. For the append function on lists, one could for example write:

assert append_test_1: [(2:nat); 3] ++ [4;5] = [2;3;4;5]

lemma append_spec: (forall l. [] ++ l = l) && (forall x xs ys. (x :: xs) ++ ys = x :: (xs ++ ys))

theorem append_empty: forall l. l ++ [] = l

Assertions should be executable. They are intended to be used for unit-testing your Lem specifications.
For OCaml and HOL4 they generate executable tests.

Lemmata are non-executable properties. They are used to document properties that are non-executable.
They can be used for documentation purposes to write down properties the user had in mind, when
defining a function. They generate proof obligation in the auxiliary files. Therefore, they can also be
used to express important high-level properties about the whole model, which the user wants to proof
correct. Theorems are lemmata that the user wants to mark as important.

Writing assertions allows an easy way to unit-test specifications. Lemmata and theorems are beneficial for
documentation purposes. The automated translation to Isabelle also allows to use Isabelle’s sophisticated
automation without knowing much about Isabelle. With that mechanism it is for example very easily
possible to search for counter-examples.

6.5 Renaming

The naming conventions of our backends differ. Therefore, it might be beneficial to use different names
depending on the backend. Renaming can also be used to avoid name clashes with existing backend
functions or just to avoid confusion when similar names already are used for the backend. For example,
there is already a HOL4 function symmetric. To avoid confusion with the Lem function isSymmetric

the Lem one can easily be renamed:

declare {hol} rename function isSymmetric = lem_is_symmetric

Besides functions, it is also possible to rename types, fields and modules.

7 The Lem Language

7.1 Metavariables and Identifiers

indexvar n , i , j , k {{ Index variables for meta-lists }}

metavar num {{ Numeric literal }}

metavar string {{ String literal }}

metavar backtick_string {{ String literal preceded by ’ }}

metavar regexp {{ Regular expresion, as a string literal }}

metavar l {{ Source location }}

metavar x {{ Name }}

metavar ix {{ Infix name }}

id ::= {{ Long identifers }}

| x1 . .. xn . x l

a ::= {{ Type variables }}

| ’ x

15

7.2 Literals

lit ::= {{ Literal constants }}

| true

| false

| num

| hex

| bin

| string

| ()

7.3 Types

typ ::= {{ Types }}

| _ {{ Unspecified type }}

| a {{ Type variables }}

| typ1 -> typ2 {{ Function types }}

| typ1 * * typn {{ Tuple types }}

| id typ1 .. typn {{ Type applications }}

| backtick_string typ1 .. typn {{ Backend-Type applications }}

| (typ)

7.4 Patterns

pat ::= {{ Patterns }}

| _ {{ Wildcards }}

| (pat as x) {{ Named patterns }}

| (pat : typ) {{ Typed patterns }}

| id pat1 .. patn {{ Single variable and constructor patterns }}

| <| fpat1 ; ... ; fpatn semi_opt |> {{ Record patterns }}

| (pat1 , , patn) {{ Tuple patterns }}

| [pat1 ; .. ; patn semi_opt] {{ List patterns }}

| (pat)

| pat1 :: pat2 {{ Cons patterns }}

| x + num {{ constant addition patterns }}

| lit {{ Literal constant patterns }}

fpat ::= {{ Field patterns }}

| id = pat l

bar_opt ::= {{ Optional bars }}

|

| ’|’

semi_opt ::= {{ Optional semi-colons }}

|

| ;

7.5 Expressions

exp ::= {{ Expressions }}

| id {{ Identifiers }}

| backtick_string {{ identifier that should be literally used in output }}

| fun psexp {{ Curried functions }}

| function bar_opt pexp1 ’|’ ... ’|’ pexpn end {{ Functions with pattern matching }}

16

| exp1 exp2 {{ Function applications }}

| exp1 ix exp2 {{ Infix applications }}

| <| fexps |> {{ Records }}

| <| exp with fexps |> {{ Functional update for records }}

| exp . id {{ Field projection for records }}

| match exp with bar_opt pexp1 ’|’ ... ’|’ pexpn l end {{ Pattern matching expressions }}

| (exp : typ) {{ Type-annotated expressions }}

| let letbind in exp {{ Let expressions }}

| (exp1 , , expn) {{ Tuples }}

| [exp1 ; .. ; expn semi_opt] {{ Lists }}

| (exp)

| begin exp end {{ Alternate syntax for (exp) }}

| if exp1 then exp2 else exp3 {{ Conditionals }}

| exp1 :: exp2 {{ Cons expressions }}

| lit {{ Literal constants }}

| { exp1 | exp2 } {{ Set comprehensions }}

| { exp1 | forall qbind1 .. qbindn | exp2 } {{ Set comprehensions with explicit binding }}

| { exp1 ; .. ; expn semi_opt } {{ Sets }}

| q qbind1 ... qbindn . exp {{ Logical quantifications }}

| [exp1 | forall qbind1 .. qbindn | exp2] {{ List comprehensions (all binders must be quantified) }}

| do id pat1 <- exp1 ; .. patn <- expn ; in exp end {{ Do notation for monads }}

q ::= {{ Quantifiers }}

| forall

| exists

qbind ::= {{ Bindings for quantifiers}}

| x

| (pat IN exp) {{ Restricted quantifications over sets}}

| (pat MEM exp) {{ Restricted quantifications over lists }}

fexp ::= {{ Field-expressions }}

| id = exp l

fexps ::= {{ Field-expression lists }}

| fexp1 ; ... ; fexpn semi_opt l

pexp ::= {{ Pattern matches }}

| pat -> exp l

psexp ::= {{ Multi-pattern matches }}

| pat1 ... patn -> exp l

tannot_opt ::= {{ Optional type annotations }}

|

| : typ

funcl ::= {{ Function clauses }}

| x pat1 ... patn tannot_opt = exp

letbind ::= {{ Let bindings }}

| pat tannot_opt = exp {{ Value bindings }}

| funcl {{ Function bindings }}

7.6 Inductive Relation Definitions

name_t ::= {{ Name or name with type for inductively defined relation clauses }}

17

| x

| (x : typ)

name_ts ::= {{ Names with optional types for inductively defined relation clauses }}

| name_t0 .. name_tn

rule ::= {{ Inductively defined relation clauses }}

| x : forall name_t1 .. name_ti . exp ==> x1 exp1 .. expn

witness_opt ::= {{ Optional witness type name declaration. Must be present for a witness type to be generated. }}

|

| witness type x ;

check_opt ::= {{ Option check name declaration }}

|

| check x ;

functions_opt ::= {{ Optional names and types for functions to be generated. Types should use only in, out, unit, or the witness type }}

|

| x : typ

| x : typ ; functions_opt

indreln_name ::= {{ Name for inductively defined relation }}

| [x : typschm witness_opt check_opt functions_opt]

7.7 Type Definitions

typs ::= {{ Type lists }}

| typ1 * ... * typn

ctor_def ::= {{ Datatype definition clauses }}

| x of typs

| x {{ Constant constructors }}

texp ::= {{ Type definition bodies }}

| typ {{ Type abbreviations }}

| <| x1 : typ1 ; ... ; xn : typn semi_opt |> {{ Record types }}

| bar_opt ctor_def1 ’|’ ... ’|’ ctor_defn {{ Variant types }}

name_opt ::= {{ Optional name specification for variables of defined type }}

|

| [name = regexp]

td ::= {{ Type definitions }}

| x tnvars name_opt = texp

| x tnvars name_opt {{ Definitions of opaque types }}

7.8 Type Schemes

c ::= {{ Typeclass constraints }}

| id tnvar

cs ::= {{ Typeclass constraint lists }}

|

| c1 , .. , ci => {{ Must have >0 constraints }}

c_pre ::= {{ Type and instance scheme prefixes }}

18

|

| forall tnvar1 .. tnvarn . cs {{ Must have >0 type variables }}

typschm ::= {{ Type schemes }}

| c_pre typ

instschm ::= {{ Instance schemes }}

| c_pre (id typ)

7.9 Target Descriptions

target ::= {{ Backend target names }}

| hol

| isabelle

| ocaml

| coq

| tex

| html

| lem

targets ::= {{ Backend target name lists }}

| { target1 ; .. ; targetn }

| ~{ target1 ; .. ; targetn } {{ all targets except the listed ones }}

targets_opt ::= {{ Optional targets }}

|

| targets

7.10 Import, Open, and Include

open_import ::= {{ Open or import statements }}

| open

| import

| open import

| include

| include import

7.11 Lemmas, Assertions, and Theorems

lemma_typ ::= {{ Types of Lemmata }}

| assert

| lemma

| theorem

lemma_decl ::= {{ Lemmata and Tests }}

| lemma_typ targets_opt x : exp

7.12 Unused?

dexp ::= {{ declaration field-expressions }}

| name_s = string l

| format = string l

| arguments = exp1 ... expn l

| targuments = texp1 ... texpn l

19

declare_arg ::= {{ arguments to a declaration }}

| string

| <| dexp1 ; ... ; dexpn semi_opt l |>

7.13 Target Representation Declarations

component ::= {{ components }}

| module

| function

| type

| field

termination_setting ::= {{ termination settings }}

| automatic

| manual

exhaustivity_setting ::= {{ exhaustivity settings }}

| exhaustive

| inexhaustive

elim_opt ::= {{ optional terms used as eliminators for pattern matching }}

|

| id

fixity_decl ::= {{ fixity declarations for infix identifiers }}

| right_assoc nat

| left_assoc nat

| non_assoc nat

|

target_rep_rhs ::= {{ right hand side of a target representation declaration }}

| infix fixity_decl backtick_string

| exp

| typ

| special string exp1 ... expn

|

target_rep_lhs ::= {{ left hand side of a target representation declaration }}

| target_rep component id x1 .. xn

| target_rep component id tnvars

declare_def ::= {{ declarations }}

| declare targets_opt compile_message id = string {{ compile_message_decl }}

| declare targets_opt rename module = x {{ rename_current_module_decl }}

| declare targets_opt rename component id = x {{ rename_decl }}

| declare targets_opt ascii_rep component id = backtick_string {{ ascii_rep_decl }}

| declare target target_rep target_rep_lhs = target_rep_rhs {{ target_rep_decl }}

| declare set_flag x1 = x2 {{ set_flag_decl }}

| declare targets_opt termination_argument id = termination_setting {{ termination_argument_decl }}

| declare targets_opt pattern_match exhaustivity_setting id tnvars = [id1 ; ... ; idn semi_opt] elim_opt {{ pattern_match_decl }}

7.14 Value Definitions

val_def ::= {{ Value definitions }}

| let targets_opt letbind {{ Non-recursive value definitions }}

| let rec targets_opt funcl1 and ... and funcln {{ Recursive function definitions }}

| let inline targets_opt letbind {{ Function definitions to be inlined }}

20

| let lem_transform targets_opt letbind {{ Function definitions to be transformed }}

ascii_opt ::= {{ an optional ascii representation }}

|

| [backtick_string]

7.15 Class and Instance Declarations

instance_decl ::= {{ is it an instance or the default instance? }}

| instance

| default_instance

class_decl ::= {{ is a class an inlined one? }}

| class

| class inline

7.16 Value Type Specifications

val_spec ::= {{ Value type specifications }}

| val x ascii_opt : typschm

7.17 Top-level Definitions

semisemi_opt ::= {{ Optional double-semi-colon }}

|

| ;;

def ::= {{ Top-level definitions }}

| type td1 and ... and tdn {{ Type definitions }}

| val_spec {{ Top-level type constraints }}

| val_def {{ Value definitions }}

| lemma_decl {{ Lemmata }}

| module x = struct defs end {{ Module definitions }}

| module x = id {{ Module renamings }}

| open_import id1 ... idn {{ importing and/or opening modules }}

| open_import targets_opt backtick_string1 ... backtick_stringn

{{ importing and/or opening only for a target / it does not influence the Lem state }}

| indreln targets_opt indreln_name1 and ... and indreln_namei rule1 and ... and rulen

{{ Inductively defined relations }}

| class_decl (x tnvar) val targets_opt1 x1 ascii_opt1 : typ1 l1 ... val targets_optn xn ascii_optn : typn ln end

{{ Typeclass definitions }}

| instance_decl instschm val_def1 l1 ... val_defn ln end

{{ Typeclass instantiations }}

| declare_def {{ modify Lem behaviour }}

defs ::= {{ Definition sequences }}

| def1 semisemi_opt1 .. defn semisemi_optn

8 Linking to existing Backend Libraries

Lem allows one to use existing backend libraries from your Lem-development. This is done by target-
specific imports and target-specific representations.

21

8.1 Target specific imports

Before using an existing target library, it usually needs to be loaded. There are target-specific open,
import and include statements that allow instructing Lem to generate output that loads an existing
backend library. These statements are very similar to the corresponding statements for Lem modules.
However, they allow specifying targets and the modules are quoted. While - generalising the Lem
staments - many possible combinations are allowed, in practice only open import statements are used.

As an example, consider Lem’s relation library. Some of its existing definitions should be mapped to
HOL functions defined in the HOL4 theory set relation. To load this theory for HOL, Lem’s relation
library contains the statement

open import {hol} ‘set_relationTheory‘

8.2 Simple Target Representations

A target rep declaration allows specifing which existing target function should be used for a Lem-specific
one. The boolean conjunction operator is for example mapped as follows

val not : bool -> bool

let not b = match b with

| true -> false

| false -> true

end

declare ocaml target_rep function not = ‘not‘

declare hol target_rep function not x = ‘~‘ x

declare isabelle target_rep function not x = ‘\<not>‘ x

declare coq target_rep function not = ‘negb‘

declare html target_rep function not = ‘¬‘

declare tex target_rep function not b = ‘\neg‘ b

• definition + target rep useful for documentation
• however, only val-spec + target rep needed
• definition gets turned into lemma when target-rep is present
• rhs of target reps can be expression containing quotations
• if arguments are given, they have to be variables
• if not all arguments are present, eta-expansion is used
• eta-expansion necessary sometimes, see not for Isabelle and HOL

8.3 Target Representations of Types

type map ’k ’v

declare ocaml target_rep type map = ‘Pmap.map‘

declare isabelle target_rep type map = ‘Map.map‘

declare hol target_rep type map = ‘fmap‘

declare coq target_rep type map = ‘fmap‘

8.4 Infix Operations

val (&&) [‘and‘] : bool -> bool -> bool

let (&&) b1 b2 = match (b1, b2) with

| (true, true) -> true

| _ -> false

22

end

declare hol target_rep function (&&) = infix ‘/\‘

declare ocaml target_rep function (&&) = infix ‘&&‘

declare isabelle target_rep function (&&) = infix ‘\<and>‘

declare coq target_rep function (&&) = infix ‘&&‘

declare html target_rep function (&&) = infix ‘∧‘

declare tex target_rep function (&&) = infix ‘\wedge‘

8.5 Special Target Representations

class (NumPow ’a)

val (**) [‘numPow‘] : ’a -> nat -> ’a

end

declare tex target_rep function numPow n m = special "{%e}^{%e}" n m

9 Type classes

9.1 Type class for Equality

The Lem equality is translated using the type class Eq, defined in library/basic classes.lem, with
operations = (isEqual) and <> (isInequal) for equality and inequality.

For HOL and Isabelle, this is always mapped to their standard equalities.

However, for OCaml, the default mapping to OCaml equality is not always appropriate, and if a Lem
development uses equality at any types at which it is not, the user must provide a suitable instantiation
for type class Eq. For example, one needs to instantiate Eq for any inductively defined types that make
use of natural (mapped to OCaml big integers) or sets or maps, or (recursively) any other types that
do.

9.2 Type classes for Sets and Maps

Sets and Maps require comparison operations in OCaml and Coq. This is provided via type classes
SetType and MapType, introduced in library/basic classes.lem; the former has a single method
setElemCompare. The default OCaml instantiation of SetType is with OCaml’s compare, but if the user
constructs sets of types containing any tuples, records, or user-defined inductive types, those types must
also have an instance declaration for SetType with a suitable comparison function. If this is omitted, the
default will be used and there may be a run-time error as the equality test will be incorrect. MapType

uses SetType as default implementation.

For example, for a simple inductive type:

type memory_order = Atomic | NA

one can make it an instance of SetType as follows, as here the default OCaml compare and the theorem
prover equalities will be correct.

instance (SetType memory_order)

let setElemCompare = defaultCompare

end

For a more complex inductive type such as the following, with recursion through a set and pair construc-
tor:

23

type tree ’a =

| Node of set (’a * tree ’a)

one can define an equality function making use of the underlying setCompareBy comparison on sets:

val treeCompare : forall ’a .

(’a -> ’a -> ordering) -> (tree ’a) -> (tree ’a) -> ordering

let rec treeCompare cmpa (Node xs) (Node ys) =

setCompareBy (pairCompare cmpa (treeCompare cmpa)) xs ys

and make the tree type constructor instantiate SetType as follows:

instance forall ’a. SetType ’a => (SetType (tree ’a))

let setElemCompare = treeCompare setElemCompare

end

Tuple types up to a certain size are made an instance of SetType in basic classes.lem; if one uses sets
or maps of wider tuples, they must also be made instances following the same pattern, otherwise Lem
will generate incorrect code.

9.3 Other Standard Library Type Classes

The standard library defines several other type classes. In library/basic classes.lem we have, in
addition to Eq and SetType:

• Ord for total linear orders with comparison operations
• OrdMaxMin extending Ord with max and min

In map.lem we have MapKeyType.

In num.lem there are various numeric types and type classes for the operations that they each may or
may not support:

• NumNegate

• NumAdd

• NumMinus

• NumMult

• NumPow

• NumDivision

• NumIntegerDivision

• NumRemainder

• NumSucc

• NumPred

In word.lem there is a type class Word of machine words, bitwise logical operations, and conversions to
and from lists of booleans.

10 Refactoring

• backend lem used for refactoring
• use command-line option -lem

• file myfile.lem translated to myfile-processed.lem

• compare files, modify myfile-processed.lem, when ready rename back to myfile.lem

24

10.1 Types

declare {lem} rename type nat = NAT

declare lem target_rep type set ’a = ‘SET‘ ’a ’a

10.2 Functions / Fields

declare {lem} rename function my_fun = my_fun’

declare lem target_rep function my_fun x y z = ‘my_fun’‘ (x, y) true z

Also possible lem transform. However, better use declare lem target rep instead of lem transform.
TODO: remove lem transform

let lem_transform my_fun x y z = other_existing_function y z

10.3 Modules

declare {lem} rename module my_mod = my_mod_new_name

25

	Introduction
	Supported software

	Installation
	Lem binary
	Backend libraries
	Documentation
	Library documentation
	Syntax
	Source code documentation
	Old Manual

	Invoking Lem
	Backends
	Dependency Resolution / Libraries
	Output Directory
	Auxiliary Output
	Updating Existing Output
	Warnings
	Miscellaneous Command-Line Options
	Command-line Options for Debugging

	Backends
	OCaml
	Compilation
	Auxiliary Files

	HOL4
	Compilation
	Auxiliary Files

	Isabelle/HOL
	Generating Isabelle Library
	Adapting Isabelle Imports
	Auxiliary Files
	Automatic Proof Tools / Counter Example Generation

	Coq
	LaTeX
	LaTeX Macro Names
	LaTeX Macro Usage
	Libraries

	HTML

	Lem-library
	General Design
	Library documentation

	Writing your own Lem files
	Header
	Importing Library
	Setting Module Name
	Importing Modules
	Opening / Including Modules

	Constant definitions
	Simple definitions
	Target specific definitions
	Inlining
	Recursive Definitions
	Termination Proofs

	Type definitions
	Assertions / Lemmata / Theorems
	Renaming

	The Lem Language
	Metavariables and Identifiers
	Literals
	Types
	Patterns
	Expressions
	Inductive Relation Definitions
	Type Definitions
	Type Schemes
	Target Descriptions
	Import, Open, and Include
	Lemmas, Assertions, and Theorems
	Unused?
	Target Representation Declarations
	Value Definitions
	Class and Instance Declarations
	Value Type Specifications
	Top-level Definitions

	Linking to existing Backend Libraries
	Target specific imports
	Simple Target Representations
	Target Representations of Types
	Infix Operations
	Special Target Representations

	Type classes
	Type class for Equality
	Type classes for Sets and Maps
	Other Standard Library Type Classes

	Refactoring
	Types
	Functions / Fields
	Modules

