
CLIFM(1) Clifm Manual CLIFM(1)

NAME
clifm - The Command Line File Manager

SYNOPSIS
clifm [OPTION]... [DIR]...

INDEX
1. Getting help

2. Description

3. Parameters
. Positional parameters
. Options

4. Commands

5. File Filters (by filename, file type, and MIME type)

6. Keyboard shortcuts

7. Theming

8. Builtin expansions

9. Tab completion

10. File opener (third-party openers are supported)

11. Shotgun, the file previewer

12. Auto-suggestions (including a warning prompt for invalid command names)

13. Shell functions

14. Plugins

15. Autocommands

16. File tags

17. Virtual directories

18. Note on speed

19. Kangaroo frecency algorithm

20. Environment

21. Security

22. Miscellaneous notes

23. Files

clifm 1.25 Apr 30, 2025 1

CLIFM(1) Clifm Manual CLIFM(1)

24. Examples

1. GETTING HELP
There are several ways to access help in clifm. Once you are in the program, enter ‘?‘ or ‘help‘ for some
basic usage examples, or press F1 to access this manpage, F2 to go to the COMMANDS section of this
manpage, or F3 to jump to the KEYBOARD SHORTCUTS section.

To get help about some specific topic, type ‘help <TAB>‘ to get a list of available help topics. Choose the
topic you want and then press Enter.

For a list of available commands along with brief descriptions, type ‘cmd<TAB>‘.

You can also access help for internal commands using the -h or --help flags. For example, to get help
about the selection function, enter ‘s -h‘ or ‘s --help‘.

A convenient way to obtain comprehensive information about clifm commands is through the ih action,
which is bound by default to the interactive help plugin (ihelp.sh). Enter ‘ih‘ to run the plugin (note that it
requires fzf(1)) and select the command you wish to learn more about.

For a quick introduction, please refer to the EXAMPLES section at the end of this document.

2. DESCRIPTION
Clifm is a Command Line Interface File Manager. Its main feature and strength lie in the fact that all input
and interacion are conducted through commands typed directly into a prompt. In other words, clifm oper-
ates as a Read-Eval-Print Loop (REPL), following this basic structure: Read (user input via the command
line), Evaluate/Execute the command, Print the results, Loop (repeat the process).

Unlike most terminal file managers out there, indeed, clifm replaces the traditional Text User Interface
(TUI), often referred to as curses or text-menu based interface, with a straightforward command-line inter-
face (REPL). This design allows it to function not only as a file manager, but also as a shell extension. You
can search for files, copy, rename, remove them, while also performing system tasks such as updating or
upgrading your system, adding cron jobs, stopping services, and launching text editors like nano, vi, or
emacs.

In summary, clifm keeps the command line visible and accessible, enhancing it with functionalities specifi-
cally tailored for file management.

3. PARAMETERS
POSITIONAL PARAMETERS

If you specify a directory as the first non-option parameter, clifm will start in that directory. Subsequent di-
rectory names are used to initialize subsequent workspaces. For example, the command ‘clifm /etc ˜/Down-
loads‘ instructs clifm to start in the /etc directory (in the first workspace) and to set the second workspace
to ˜/Downloads. Up to 8 positional parameters are supported (further parameters are ignored).

If no workspace is specified, clifm will use the first workspace. To start in a specific workspace use the -w
option followed by the workspace number. For instance, ‘clifm -w4 /etc ˜/Downloads‘ will start clifm in
the /etc directory within workspace 4, setting the workspace 5 to ˜/Downloads.

If no positional parameter is provided and the -w option is not used, clifm will start in the last visited direc-
tory (and in the last active workspace). You can disable this behavior by using the --no-restore-last-path
command line switch (or by setting the RestoreLastPath option to false in the configuration file), in which
case the current directory will be used as starting path and all workspaces will be unset.

clifm 1.25 Apr 30, 2025 2

CLIFM(1) Clifm Manual CLIFM(1)

To start always in a specific directory, disregarding the current directory, you can use the StartingPath op-
tion in the configuration file.

OPTIONS
Note: If compiled in POSIX mode, the following list of options does not apply. In this case, run ‘clifm -h‘
to get the actual list of options. (To make sure run ‘clifm -v‘: if compiled in POSIX mode the version num-
ber is followed by "-POSIX").

-a, --show-hidden[=VAL]
Show hidden files (filenames starting with ’.’). Supported values are: first, last, true, and false. If
no value is specified, it defaults to true.

-A, --no-hidden
Do not show hidden files.

-b, --bookmarks-file=FILE
Set an alternative bookmarks file.

-c, --config-file=FILE
Set an alternative configuration file.

-D, --config-dir=DIR
Set an alternative configuration directory (if configuration files do not already exist, they will be
created in DIR).

-e, --no-eln
Do not display Entry List Numbers (ELNs) to the left of filenames (note that while ELNs are not
printed, they remain accessible and can still be used as usual).

-E, --eln-use-workspace-color
Color ELNs using the current workspace color.

-f, --dirs-first
List directories first.

-F, --no-dirs-first
Do not list directories first.

-g, --pager
Enable Mas, the builtin pager for file listing.

-G, --no-pager
Disable the file pager.

-h, --help
Print this help and exit.

-H, --horizontal-list
List files horizontally (instead of vertically).

-i, --no-case-sensitive
Ignore case distinctions when listing files.

-I, --case-sensitive
Do not ignore case distinctions when listing files.

-k, --keybindings-file=FILE
Set an alternative keybindings file.

-l, --long-view
Print file extended metadata next to filenames (long view). The displayed fields can be customized
using --prop-fields (or the PropFields option in the configuration file). Set a custom time/date
format with --time-style (or the TimeStyle option in the configuration file).

clifm 1.25 Apr 30, 2025 3

CLIFM(1) Clifm Manual CLIFM(1)

-L, --follow-symlinks-long
When in long view, display information for the files referenced by symbolic links instead of the
symbolic links themselves.

-m, --dirhist-map
Enable the directory history map to keep in view previous, current, and next entries in the direc-
tory history list.

-o, --autols
Automatically list files when changing the current directory with the cd command.

-O, --no-autols
Do not automatically list files when changing the current directory with the cd command.

-P, --profile=PROFILE
Use PROFILE as profile. If PROFILE does not exist, it will be created. The default profile is de-
fault.

-r, --no-refresh-on-empty-line
Do not refresh the current list of files when pressing Enter on an empty line.

-s, --splash
Display the splash screen at startup.

-S, --stealth-mode
In stealth mode (also known as incognito or private mode), no trace is left on the host system. No
files are read or created, and all settings revert to their default values. However, most settings can
still be controlled via command line options and dedicated environment variables (see the ENVI-
RONMENT section below). Additionally, refer to the history command and the --no-history
command line switch for more options.

-t, --disk-usage-analyzer
Run in disk usage analyzer mode. This is equivalent to using --sort=size --long-view
--full-dir-size --no-dirs-first. The recursive size of the current directory will be displayed af-
ter the list of files. You can toggle this mode in place by pressing Alt+Tab (or Ctrl+Alt+i).

-T, --trash-dir=DIR
Set an alternative trash directory.

-v, --version
Print version details and exit.

-w, --workspace=NUM
Start in workspace NUM. By default, clifm will recover the last visited directory for each work-
space. You can override this behavior using positional parameters to start in workspace NUM and
in the specified directory (e.g.: ‘clifm -w4 /etc‘). Consult the POSITIONAL PARAMETERS
section above for more information.

-x, --no-ext-cmds
Disallow the use of external (shell) commands.

-y, --light-mode
Enable the light mode to speed up clifm (see the NOTE ON SPEED section below).

-z, --sort=METHOD
Sort files by METHOD, where METHOD is one of: 0 = none, 1 = name, 2 = size, 3 = atime, 4 =
btime, 5 = ctime, 6 = mtime, 7 = version, 8 = extension, 9 = inode, 10 = owner, 11 = group, 12 =
blocks, 13 = links, or 14 = type. Both numbers and names are accepted. For example, you can use
--sort=9 or --sort=inode.

--bell=TYPE
Set the terminal bell type, where TYPE is one of: 0 = none, 1 = audible, 2 = visible (requires read-
line >= 8.1), and 3 = flash. Defaults to 2 (visible), and, if not available, 0 (none). Only numbers

clifm 1.25 Apr 30, 2025 4

CLIFM(1) Clifm Manual CLIFM(1)

are allowed.

--case-sens-dirjump
Do not ignore case when consulting the jump database (via the j command).

--case-sens-path-comp
Enable case sensitive path completion.

--cd-on-quit
Write the last visited directory to $XDG_CONFIG_HOME/clifm/.last for later access by the corre-
sponding shell function at program exit. Consult the SHELL FUNCTIONS section below for
more information.

--color-scheme=NAME
Use the color scheme specified by NAME.

--color-links-as-target
Color symbolic links using the color of the target file (an ’@’ character is prepended to the file-
name to mark it as a symbolic link).

--cwd-in-title
Print the current working directory in the terminal window title (otherwise, only the program name
is printed).

--data-dir=DIR
Load data files, such as plugins, color schemes, and default configuration files, from DIR (this is
by default the installation directory, usually /usr/share/clifm).

--desktop-notifications[=STYLE]
Enable desktop notifications. The notification style can be optionally specified: kitty (requires the
Kitty terminal or a terminal supporting the Kitty Notifications Protocol), system, or false. If
STYLE is omitted, it defaults to system. Enter ‘help desktop-notifications‘ in clifm for more in-
formation.

--disk-usage
Show disk usage of the filesystem where the current directory resides, in the format FREE/TOTAL
(FREE %) TYPE DEVICE.

--full-dir-size
Display recursive directory sizes (long view only).

--fuzzy-algo=VER
Fuzzy matching algorithm, where VER is either 1 (faster, but not Unicode aware), or 2 (slower,
Unicode aware). Bear in mind however that the second algorithm (default) will fallback to the first
one (because it is faster) whenever the query string contains only ASCII characters, to minimize
the performance penalty.

--fuzzy-matching
Enable fuzzy matching for filename/path completions and suggestions.

--fzfpreview-hidden
Enable file previews for tab completion (fzf mode only) with the preview window hidden (toggle it
by pressing Alt+p).

--fzftab
Use fzf(1) to display completion matches.

--fnftab
Use fnf(1) to display completion matches.

--icons
Enable icons.

clifm 1.25 Apr 30, 2025 5

CLIFM(1) Clifm Manual CLIFM(1)

--icons-use-file-color
Instead of a specific color, icons use the color of the corresponding filename. Useful when building
custom color schemes, this option implies --icons, and is effective only when compiled with sup-
port for icons-in-terminal or Nerdfonts. The default build is compiled with emoji-icons support,
in which case this option is ignored, as Unicode icons have their own builtin colors.

--int-vars
Allow the use of internal variables (e.g.: ‘VAR=/bin; cd $VAR‘).

--list-and-quit
List files and quit. Useful in conjunction with positional parameters (e.g.: ‘clifm --list-and-quit
/etc‘). If no positional parameter is provided, the current directory is used instead.

--ls
Short for --list-and-quit.

--lscolors
Read file colors from the LS_COLORS environment variable (the FreeBSD LSCOLORS format
is also supported). Note that clifm-specific colors (like empty directories or inaccessible files) will
be disabled. Note also that colors for specific filenames, as defined in LS_COLORS, are not sup-
ported. For more information about LS_COLORS, consult dircolors(1), or refer to the ls(1)
FreeBSD manpage for LSCOLORS.

--max-dirhist
Maximum number of visited directories to remember.

--max-files=NUM
List only up to NUM files. Use -1 or unset to remove this limit (default). See the mf command for
a more detailed description.

--mimelist-file=FILE
Set FILE as Lira´s configuration file (see the FILE OPENER section below for more informa-
tion).

--mnt-udisks2
Use udisks2(1) instead of udevil(1) (default) for the media command.

--no-bold
Disable bold colors (applies to all color schemes).

--no-cd-auto
By default, clifm changes directories by just entering their filenames. This option forces the use of
the cd command.

--no-classify
By default, clifm appends a file type indicator character to filenames when running without colors
(see the --no-color option below) and a directory indicator (along with a file counter) when run-
ning with colors. Classification characters are as follows:

/n: directory (n = file counter)
@: symbolic link
!: broken symbolic link
|: FIFO/pipe
=: socket
*: executable file
+: block device
-: character device
?: unknown file type

Use this option to disable file type classification. Note that this option also disables the file
counter.

clifm 1.25 Apr 30, 2025 6

CLIFM(1) Clifm Manual CLIFM(1)

--no-clear-screen
Do not clear the screen before listing files.

--no-color
Disable colors.

--no-columns
Disable columned file listing (use a single column).

--no-file-cap
Do not check file capabilities when listing files (only meaningful for performance reasons).

--no-file-ext
Do not check file extensions (mostly used to colorize specific filenames) when listing files.

--no-file-counter
Disable the file counter for directories (speeding up the listing process: counting files in directories
is particularly expensive).

--no-follow-symlinks
Do not follow symbolic links when listing files (overrides both --follow-symlinks-long and
--color-links-as-target).

--no-fzfpreview
Disable file previews for tab completion (fzf mode only).

--no-highlight
Disable syntax highlighting (to customize highlighting colors, see the COLOR CODES section
below).

--no-history
Do not write commands to the history file (see also the HistIgnore option in the configuration
file).

--no-open-auto
By default, clifm opens files (using the default associated application) by just entering their file-
names. Use this option to force the use of the open command. Consult the mime command and
the FILE OPENER section for more information about default associated applications.

--no-refresh-on-resize
Do not attempt to refresh the list of files when the window is resized.

--no-restore-last-path
By default, clifm saves the last visited directory for each workspace to restore it in the next ses-
sion. Use this option to disable this behavior.

--no-suggestions
Disable the auto-suggestions system.

--no-tips
Do not display startup tips.

--no-truncate-names
Do not truncate filenames (see the MaxFilenameLen option in the configuration file).

--no-unicode
Do not use Unicode decorations.

--no-warning-prompt
Disable the warning prompt (used to highlight invalid command names).

--no-welcome-message
Disable the welcome message.

clifm 1.25 Apr 30, 2025 7

CLIFM(1) Clifm Manual CLIFM(1)

--only-dirs
List directories only.

--open=FILE
Run as a standalone file opener: open FILE and exit, where FILE can be a regular file or a direc-
tory, using either standard notation (/dir/file), the file URI scheme (file:///dir/file), or a URL
(www.domain or https://domain).

--opener=APPLICATION
Use APPLICATION (e.g.: rifle or xdg-open) as file opener/launcher (instead of Lira, clifm’s de-
fault opener).

--pager-view=MODE
List files in the pager according to MODE. Supported values are: auto (use the current listing
mode - this is the default), long (list files in long view), and short (list files in short view).

--physical-size
Display physical file sizes (device usage) instead of logical sizes (apparent size).

--preview=FILE
Display a preview of FILE (via Shotgun) and exit. Use --shotgun-file to set an alternative con-
figuration file. Consult the SHOTGUN section below for more information.

--print-sel
Print the list of selected files after the file list. The maximum number of selected files to be printed
can be specified using the MaxPrintSelfiles option in the configuration file (by default, this option
is set to 0 (auto), meaning it will never exceed half the terminal height).

--prop-fields=FORMAT
Set fields to be displayed in long view. For information on how to construct this format string con-
sult the PropFields option in the configuration file.

--ptime-style=STYLE
Time/date style used by the p/pp command and the --stat/--stat-full command line switches.
Available styles: default, iso, long-iso, full-iso, full-iso-nano, and +FORMAT (FORMAT is in-
terpreted like in strftime(3). Nano-second precision is available via the %N modifier, like in
date(1)).

--readonly
Run in read-only mode (internal commands able to modify the filesystem are disabled). Disabled
commands are: ac, ad, bb, bl/bleach, br/bulk, c, dup, l, le, m, md, n/new, oc, paste, pc, r, rr,
t/trash, tag, te, u/untrash, and vv, plus the shell commands cp, rm, mv, ln, mkdir, rmdir, link,
and unlink.

--report-cwd
Report the current directory to the underlying terminal (using the OSC-7 escape sequence, not
supported by all terminals).

--rl-vi-mode
Set readline to vi editing mode (defaults to emacs editing mode).

--secure-cmds
Sanitize commands passed to the OS to mitigate command injection attacks (--secure-env is im-
plied). Consult the SECURITY section below for more information.

--secure-env
Run clifm in a secure environment (regular mode). Consult the SECURITY section below.

--secure-env-full
Run clifm in a secure environment (full mode). Consult the SECURITY section below.

clifm 1.25 Apr 30, 2025 8

CLIFM(1) Clifm Manual CLIFM(1)

--sel-file=FILE
Set FILE as the selections file.

--share-selbox
By default, each user profile has a private Selection Box. Use this option to make the Selection
Box common to all user profiles.

--shotgun-file=FILE
Set FILE as the shotgun configuration file. See the SHOTGUN section below for more informa-
tion.

--si
Display file sizes in SI units (powers of 1000) instead of IEC units (powers of 1024).

--smenutab
Use smenu(1) to display completion matches.

--sort-reverse
Sort files in reverse order (e.g.: z-a instead of a-z).

--stat FILE...
Run the p command on FILE(s) and exit. This must be the last option on the command line. Use
--ptime-style to set a custom date/time format.

--stat-full FILE...
Same as --stat, but it runs the pp command (instead of p) on FILE(s).

--stdtab
Use the standard mode (readline´s builtin) for tab completion.

--time-style=STYLE
Time/date style used in long view. Available styles: default, relative, iso, long-iso, full-iso,
+FORMAT (FORMAT is interpreted like in strftime(3)).

--trash-as-rm
Make the r command move files to the trash instead of removing them.

--unicode
By default, Unicode decorations are used if Unicode support is detected for the running terminal.
If no support is detected, you can use this option to force the use of Unicode decorations.

--virtual-dir=PATH
Use PATH as clifm´s virtual directory.

--virtual-dir-full-paths
Print filenames in virtual directories as absolute paths instead of just basenames.

--vt100
Run in VT100 compatibility mode (use this option if running on a really ancient terminal emula-
tor).

Options precedence order: 1) command line flags; 2) configuration file; 3) default values.

4. COMMANDS
Help for all commands listed here can be accessed via the -h or --help options. For example, use ‘p
--help‘ to get help about the properties function.

Note 1: ELN = Entry List Number. For example, in the line "12 chocolatebox" (when listing files), 12 is the
ELN corresponding to the file named "chocolatebox". The slash followed by a number (/xx) after directo-
ries and symbolic links to directories (the file counter) indicates the number of files in the corresponding di-
rectory, excluding self and parent directories ("." and ".." respectively).

Note 2: In case of ELN-filename conflict, the backslash can be used to prevent ELN expansion. For

clifm 1.25 Apr 30, 2025 9

CLIFM(1) Clifm Manual CLIFM(1)

example, if there are at least two files and one of them is named 2, clifm cannot determine in advance if the
command refers to the ELN 2 or the filename 2. To specify the ELN, simply write the ELN number (e.g.
‘s 2‘). To refer to the filename, escape it using the backlash character: ‘s \2‘.

Note 3: Clifm supports fused parameters for internal commands taking an ELN or range of ELNs as para-
meters. Much like short options for command line programs, you can omit the space between internal com-
mands and the corresponding ELN passed as argument. For example, you can write CMDELN instead of
CMD ELN. Thus, ‘o12‘ or ‘s1-5‘ can be used instead of ‘o 12‘ and ‘s 1-5, respectively. Be aware that
omitting the space character will disable tab completion and suggestions for ELNs. If there is a file named
o12 (more generally, CMDELN), and if you want to refer to this file instead of a clifm command, escape the
filename to prevent the split: ‘\o12‘.

FILE/DIR
If the autocd and/or auto-open functions are enabled (default), open FILE or change directory to
DIR. In other words, ‘FILE‘ amounts to ‘open FILE‘ (or ‘o FILE‘), and ‘DIR‘ to ‘cd DIR‘.
ELNs, of course, are allowed. For example: ‘12‘.

/PATTERN [-FILETYPE] [-x] [DIR]
This is the quick search function. Type ‘/‘ followed by a glob or (extended) regular expression,
and clifm will list all matches in the current directory. For example, both ‘/*.pdf‘ and ‘/.pdf$‘ ex-
pressions will list all PDF files in the current directory, the former using wildcards, and the second
a regular expression.

You can list previously used search patterns using the TAB key: ‘/*<TAB>‘.

Note 1: By default, the search function attempts to resolve a pattern first as glob, and then, if no
matches are found, as a regular expression. This behavior can be customizad in the configuration
file, using the SearchStrategy option.

Note 2: If no further parameter is provided, but only a glob pattern (wildcards), you can expand
the pattern into the corresponding matches by hitting the TAB key. For example, to list all C files
in the current directory: ‘/*.c<TAB>‘.

Note 3: Expressions containing no pattern metacharacter are automatically transformed into a
glob/regular expression (depending on the value of the SearchStrategy option). For example,
‘/test‘ becomes ‘*test*‘ or ‘/.*test.*‘.

1. Case sensitivity

By default, regular expressions are case insensitive (glob expressions, by contrast, are always case
sensitive). However, you can enable case sensitive search by setting the CaseSensitiveSearch op-
tion to true in the configuration file.

2. Destination directory

To search for files in any directory other than the current directory, specify the directory name as a
further parameter (DIR). For example, enter ‘/ˆA 7‘ to search for all files starting with ´A´ in the
directory corresponding to the ELN 7.

3. File type filter

The result of the search can be further filtered by specifying a filter type: -b, -c, -d, -f, -l, -p, -s, -O,
and -P (block device, character device, directory, regular file, symbolic link, FIFO/pipe, socket,
door (Solaris), and port (Solaris) respectively. For example, ‘/[.-].*d$ -d Documents/‘ will list all
directories containing a dot or a dash and ending with ´d´ in the directory named Documents.

clifm 1.25 Apr 30, 2025 10

CLIFM(1) Clifm Manual CLIFM(1)

4. Invert matching

Prepend the exclamation mark (!) to invert the meaning of a given search pattern. For example:
‘!.*s$ -d /etc‘ will match all directories in /etc not ending with ´s´, just as ‘!D*‘ will match all
files in the current directory not starting with ´D´.

5. Recursive search

To perform a recursive search use the -x parameter, and, optionally, a search path (DIR) (file type
filter is not allowed). The search will be performed using find(1) as follows: find DIR MODE
PATTERN. If no search path is provided, the search is executed starting in the current directory.
Otherwise, the search starts in DIR. MODE is one of:

-name: if SearchStrategy is not regex-only and CaseSensitiveSearch is set to true

-iname: if SearchStrategy is not regex-only and CaseSensitiveSearch is set to false

-regex: if SearchStrategy is regex-only and CaseSensitiveSearch is set to true

-iregex: if SearchStrategy is regex-only and CaseSensitiveSearch is set to false

;[CMD], :[CMD]
If CMD is not specified, run the system shell in the current directory. If CMD is specified, skip all
clifm expansions (see the BUILT-IN EXPANSIONS section below) and run the input string
(CMD) as is via the default system shell (consult the MISCELLANEOUS NOTES section for in-
formation on how shell commands are executed).

ac, ad FILE...
Archive/compress and dearchive/decompress one or multiple files and/or directories.

The archiver function brings two modes: ac, to generate archives or compressed files, and ad, to
decompress or dearchive files, either just listing, extracting, recompressing, or mounting their con-
tent. In this latter case, the mountpoint used automatically is $HOME/.config/clifm/PRO-
FILE/mounts/ARCHIVE_NAME.

Example: ‘ac sel‘, ‘ac 4-25 myfile‘, or ‘ad *.tar.gz‘.

Multiple archive/compression formats are supported, including Zstandard. Note that when it
comes to ISO 9660 files only a single file is supported.

The archive mount function for non ISO files depends on archivemount, while the remaining
functions depend on atool and other third-party utilities for achieve formats support, for example,
p7zip. p7zip is also used to manage most decompressing options for ISO 9660 files, except for
mount, in which case mount(8) is used. Creation of ISO files is done via genisoimage(1). For
more information consult atool(1), archivemount(1), zstd(1), and 7z(1).

acd, autocd [on | off | status]
Toggle the autocd function. If set to on, ‘DIR‘ amounts to ‘cd DIR‘.

actions [list | edit [APP]]
To list available actions (or plugins) use the list subcommand. Note that, since list is the default
action, it can be omitted.

Use the edit subcommand to add, remove or modify custom actions (using APP if specified or the
default associated application for text files otherwise).

The aim of this function is to allow the user to easily add custom commands and functions to

clifm 1.25 Apr 30, 2025 11

CLIFM(1) Clifm Manual CLIFM(1)

clifm. In other words, the actions function is a plugins capability.

This is the general procedure: a) edit the actions file (by running ‘actions edit‘) and bind a custom
action name to an executable file (written in any language you want, be it a shell or Python script,
a C program or whatever you like). For example, "myaction=myscript.sh". b) Drop the corre-
sponding script (in our example, myscript.sh) into the plugins directory, usually, ˜/.con-
fig/clifm/plugins (see the FILES section below). 3) Call the script using the custom action name
defined before as if it were any other command: run ‘myaction‘, and myscript.sh will be executed.

Note that all arguments passed to the action command (myaction) will be passed to the script or
program as well (myscript.sh), which is executed via the system shell (consult the MISCELLA-
NEOUS NOTES section for information on how shell commands are executed).

To assist the user when writing plugins, clifm’s state information is exported via environment vari-
ables while running plugins. For example, CLIFM_LONG_VIEW is set to 1 if currently running
in long view (see the ENVIRONMENT section for the complete list of exported values).

The plugins bundled with clifm (take a look at the plugins directory) can be used as a starting
point to create new plugins.

alias [import FILE | ls, list | NAME]
With no argument (or with ls,list parameters), it prints the list of available aliases. To get the de-
scription of a specific alias enter ‘alias‘ followed by the alias name. To write a new alias simply
enter edit (or press F10) to open the configuration file and add a line like this: "alias name=´com-
mand args...´" or "alias name=´directory´".

To import aliases from a file, provided it contains aliases in the specified form (i.e. the POSIX syn-
tax for the alias shell command), use the import parameter. Aliases conflicting with some of the
internal commands will not be imported.

However, a neat usage for the alias function is not so much to bind short keys to commands, but to
files and directories visited regularly. In this way, it is possible to bind as many files or directories,
no matter how deep they are in the filesystem, to very short strings, even single characters. For ex-
ample, "alias w=´/some/file/deep/in/the/filesystem´". Now, no matter where you are, you can enter
‘w‘, provided autocd and/or auto-open function is enabled, to access the file or directory you
want. Theoretically at least, this procedure can be repeated until the system memory is exhausted.

To create multiple aliases for files at once, this is the recommended procedure: 1) Select all files
you want to alias with the sel command: ‘s file1 file2 file3 ...‘. 2) Export the selected files into a
temporary file running ‘exp sel‘; 3) Edit this file to contain only valid alias lines:

alias a1=´file1´
alias b1=´file2´
alias c1=´file3´

Note: Make sure alias names do not conflict with other commands, either internal or external. To
bypass the conflicts check, performed automatically by the ‘alias import‘ command, you can edit
the aliases file manually (F10).

4) Finally, import this file with the alias command: ‘alias import tmp_file‘. Now you can access
any of these files by entering just a few characters: ‘a1‘, ‘b1‘, and ‘c1‘.

auto [list | none | unset | OPTION=VALUE...]
Set a temporary autocommand for the current directory.

Unlike permanent autocommands, defined in the configuration file via the autocmd keyword (see

clifm 1.25 Apr 30, 2025 12

CLIFM(1) Clifm Manual CLIFM(1)

the AUTOCOMMANDS section below), options set via the auto command are temporary, i.e.,
valid only for the current directory and the current session.

Options set via this command take precedence over both permament autocommands and regular
options (set either via the command line or the configuration file).

Examples

List available autocommands
auto list

List files in the current directory in long view
auto lv=1

List only PDF files, set the color scheme to nord, and sort files by size
auto ft=.*.pdf$,cs=nord,st=size

The same list of options can be specified sequentially (i.e., previous options are preserved)
auto ft=.*.pdf$
auto cs=nord
auto st=size

Unset the files filter and the color scheme, and change sort to blocks
auto ft=,cs=,st=blocks

Unset all temporary autocommands previously set for the current directory
auto unset

Reload the current directory ignoring all autocommands (including permanent autocommands)
auto none

For the list of available option codes consult the AUTOCOMMANDS section or enter ‘help au-
tocommands‘.

ao, auto-open [on | off | status]
Toggle the auto-open function. If set to on, ‘FILE‘ amounts to ‘open FILE‘.

b, back [h, hist | clear | !ELN]
Unlike ‘cd ..‘, which changes to the parent directory of the current directory, this command (with
no argument) changes to the previously visited directory. You can also use Alt+j or Shift-Left.

Clifm keeps a record of all visited directories (to prevent a directory from being added to the di-
rectory history list use the DirhistIgnore option in the main configuration file). You can see this
list by typing ‘b hist‘ or ‘b h‘, and you can access any element in this list by simply passing the
corresponding ELN in this list (preceded by an exclamation mark) to the back command. Exam-
ple:

:) > ˜ $ bh
1 /home/user
2 /etc
3 /proc
:) > ˜ $ b !3
:) > /proc $

Note: The highlighted line (by default printed in bold cyan) indicates the current position of the
back function in the directory history list.

clifm 1.25 Apr 30, 2025 13

CLIFM(1) Clifm Manual CLIFM(1)

Finally, you can also clear this history list by entering ‘b clear‘.

The best way of navigating the directory history list, however, is using the directory jumper func-
tion (invoked by the j command). You can also take a look at the dh command.

Use the f (or forth) command to move forward, instead of backward, in the directory history list.

bb, bleach FILE...
Bleach is a builtin filenames sanitizer (based on detox [https://github.com/dharple/detox]), whose
aim is to rename filenames using only ASCII characters.

Bleach sanitizes filenames either by removing extended-ASCII/Unicode characters without an
ASCII alternative/similar character, or by translating these characters into an alternative ASCII
character based on familiarity/similarity.

These following simple rules are used to compose sanitized filenames:
- NUL (\0) and slash (/) characters are completely disallowed
- Only characters from the Portable Filename Characters Set (a-zA-Z0-9._-) are allowed
- { [()] } are replaced by a dash (-). Everything else is replaced by an underscore (_)
- Unicode characters are translated, whenever possible, into an ASCII replacement. Otherwise,

they are just ignored. For example, an upper case A with diacritic (accent, umlaut, diaresis, and so
on) will be replaced by an ASCII A, but the smiley face emoji will be simply ignored. A few spe-
cial signs will be translated into text, for instance, the pound sign will be replaced by "_pound_"
and the Euro symbol by "EUR". Translations are made via a translation table (see the cleaner_ta-
ble.h in the source code).

- Filenames never start with a dash (-)
- Files named . and .. are not allowed
- Append .bleach to single character filenames
- Do not let a replacement filename start with a dot (hidden) if the original does not
- Max filename length is NAME_MAX (usually 255)

Modified filenames will be listed on the screen asking the user for confirmation, allowing besides
to edit (by pressing ’e’) the list of modified filenames via a text editor.

If the replacement filename already exists, a dash and a number (starting from 1) will be appended.
E.g.: file-3.

bd [NAME]
bd is the backdir function: it takes you back to the parent directory matching NAME.

With no arguments, bd lists all parent directories relative to the current directory, allowing the user
to select an entry. Otherwise, it checks the absolute current directory against the provided query
string (NAME): if only one match is found, it automatically changes to this directory; if multiple
matches are found, the list of matches is presented to the user in a selection menu. If NAME is a
directory name, bd just changes to this directory, be it a parent of the current directory or not.

Tab completion and suggestions are available for this function.

Example:

Provided the current directory is /home/user/git/repositories/lambda, entering ‘bd git‘ will take
you immediately to /home/user/git.

Note that there is no need to type the entire directory name; if the query is unambiguous, only a
few characters, and even just one, suffices to match the appropriate directory. In our example, ‘bd
g‘ is enough to take you to /home/user/git, just as ‘bd h‘ will take you to /home.

clifm 1.25 Apr 30, 2025 14

CLIFM(1) Clifm Manual CLIFM(1)

The query string can match any part of a directory name: ‘bd er‘, for instance, will take you to
/home/user, since it is an unambiguous query.

bl FILE...
Create symbolic links (in the current directory) for each specified file. For example, to create sym-
bolic links in the directory dir for all PNG files in the current directory, issue these commands: ‘s
*.png‘, ‘cd dir‘, and then ‘bl sel‘.

bm, bookmarks [a, add FILENAME NAME [SHORTCUT] | d, del NAME | e, edit [APP] | NAME, SHORT-
CUT]

Bookmarks can be managed either from the bookmark manager screen or from the command line.

1. The bookmark manager screen

To access the bookmark manager screen enter bm. Here you can cd to the desired bookmark by en-
tering either ELN or filename (regular files can be bookmarked as well). In this screen you can
also add, remove, or edit your bookmarks by entering ’e’ to edit the bookmarks file (which is sim-
ply a list of lines with this format: NAME:PATH. E.g.: "docs:/home/user/documents"). Make your
changes, save, and exit.

2. The command line
Command Description

Bookmark the /media/mount directory as "mnt"bm add /media/mount mnt

Change to/open the bookmark named "mnt"bm mnt

Delete the bookmark named "mnt"bm del mnt

Edit your bookmarksbm edit

A handy use for the bookmarks function is to create bookmarks using short names, which will be
later easily accessible via tab completion.

The b: prefix

The b: prefix is used as a way to quickly access/operate on bookmarks. A few examples:

Command Description
List available bookmarksb:<TAB>

Change to the bookmark named "net" (1)b:net

Print file properties of the bookmarks named "bm1" and "bm2"p b:bm1 b:bm2

Select all bookmarks at onces b:

(1) If your are not sure about where a bookmark points to, type ‘b:NAME<TAB>‘.

br, bulk FILE... [:EDITOR]
Bulk rename FILE(s).

Each filename will be copied to a temporary file, which will be opened via EDITOR (default asso-
ciated application for plain text files if omitted), letting the user modify it. Once the file has been
modified and saved, the modified names are printed on the screen and the user is asked for confir-
mation.

This builtin bulk rename function will not deal with deletions, replacements, filename conflicts and
the like. For a smarter alternative use qmv(1).

clifm 1.25 Apr 30, 2025 15

CLIFM(1) Clifm Manual CLIFM(1)

c, m, md, r
Short for the following shell commands respectively: ‘cp -iRp‘, ‘mv -i‘, ‘mkdir -p‘, and ‘rm‘
(for files) or ‘rm -r‘ (for directories).

By default, the c, m, and r commands ask for confirmation before operations. Since this might
sometimes be quite intrusive (specially when operating on large number of files), it is possible to
turn interactivity off in two different ways:

a) For the current command only: via the -f, --force switch. For example: ‘c -f sel‘, ‘m -f sel‘,
or ‘r -f *‘.

b) Permanently. Use the cpCmd, mvCmd, and rmForce options in the configuration file to per-
manently set any of these commands to non-interactive mode.

To use these commands without any of these options, or with any other option you want, use the
appropriate shell command, for instance, cp instead of c. Of course, you can also create aliases to
use your preferred commands, for example, "c=´cp -adp´". Consult the alias command above for
more information.

The l command allows the use of the e, edit option to modify the destination of a symbolic link.
For example: ‘l edit 12‘ (or ‘le 12‘) to relink the symbolic link corresponding to the file whose
ELN is 12.

When using the sel keyword and no destination is provided, c and m will copy/move selected files
to the current directory.

Whenever sel is not used, but just a source filename (and no destination is provided), the m com-
mand behaves much like the imv(1) shell command (from the ´renameutils´ package), providing
an interactive renaming function: it prompts the user to enter a new name using the source file-
name as base, so that it does not need to be typed twice. For this alternative prompt, only tab com-
pletion for filenames is available.

Clifm supports advcp(1), wcp, and rsync(1) to copy files (they include a progress bar). To use
them instead of cp(1) set the corresponding option (cpCmd) in the configuration file. If advcp is
selected, the command used is ‘advcp -giRp‘ (or ‘advcp -gRp‘, for non-interactive mode). If
rsync, the command is ‘rsync -avP‘. wcp takes no argument.

advmv(1) is also supported to move files (to add a progress bar to the move command). Use the
mvCmd option in the configuration file to choose this alternative implementation of mv. In this
case, the command used is ‘advmv -gi‘ (or advmv -g‘ for non-interactive mode).

cd [DIR]
Change the current working directory.

Directory check order:
1. If no argument is provided, change to the home directory ($HOME, or, if not set, the sixth

field of the entry corresponding to the current user in /etc/passwd)
2. If the argument is an absolute path (begins with a slash character), or the first component is dot

(.) or dot-dot (..), convert to canonical form (via realpath(3)) and, if a valid directory, change to
this directory.
3. Check the CDPATH environment variable and append /DIR to each of the paths specified

here. If the result of the concatenation is a valid directory, change to it.
4. Check directories in the current working directory. If a matching directory is found, change to

it.

clifm 1.25 Apr 30, 2025 16

CLIFM(1) Clifm Manual CLIFM(1)

You can use either ELNs or a string to indicate the directory you want. E.g.: ‘cd 12‘ or ‘cd ˜/me-
dia‘. If autocd is enabled (default), ‘cd 12‘ and ‘cd ˜/media‘ can be written as ‘12‘ and ‘˜/media‘
respectively as well.

Unlike the shell cd command, clifm’s builtin cd command not only changes the current directory,
but also lists its content (provided the option AutoLs is enabled, which is the default) according to
a comprehensive list of color codes. By default, the output of cd is much like this shell command:
‘cd DIR && ls --color=auto --group-directories-first‘.

Automatic file listing can be disabled by either setting AutoLs to false in the configuration file or
running clifm with the -O or --no-autols option.

cl, columns [on | off]
Toggle columned file listing.

cmd, commands
Show this list of commands.

An alternative way of getting information about clifm commands is via the interactive help plugin
(depends on fzf), by default bound to the ih action name.

colors
Preview the current color scheme (same as ‘cs preview‘).

config [edit [APP] | reset | reload | dump]
Manage the main configuration file.

To edit the configuration file use the edit subcommand. If an application is specified (‘config edit
APP‘), APP will be used to open the file (otherwise, the default associated program will be used).
Edit settings to your liking, save, and quit the editor (changes are automatically applied). Note
that, since edit is the default action, it can be omitted. Enter just ‘config‘ to open the configuration
file, or ‘config APP‘ to open it using APP.

Use the reload subcommand to reload the main configuration file and update settings accordingly.

Use the reset subcommand to generate a fresh configuration file and create a backup copy of the
old one (named clifmrc.YYYYMMDD@HH:MM:SS).

The dump subcommand prints the list of settings (as defined in the main configuration file) with
their current value. Those differing from the default values are highlighted, and the default value
for the corresponding option is displayed in brackets.

cs, colorschemes [edit [APP] | n, name | p, preview | check-ext | NAME]
With no arguments, list available color schemes (use ‘cs name‘ to print the current color scheme
name).

To get a preview of the current color scheme use the preview subcommand: ‘cs preview‘.

Use the check-ext subcommand to check for file extension conflicts: ‘cs check-ext‘.

Use the edit subcommand to open/edit the configuration file of the current color scheme (open
with APP if specified, or with the default associated application otherwise).

To switch color schemes, specify the color scheme name: ‘cs NAME‘. (Use the TAB key to list
available color schemes: ‘cs <TAB>‘).

clifm 1.25 Apr 30, 2025 17

CLIFM(1) Clifm Manual CLIFM(1)

d, dup FILE...
Duplicate files passed as parameters, either directories or regular files. The user will be asked for a
destination directory. Duplicated filenames are generated by appending ".copy" to the basename of
each source file. For example: ‘d /my/file‘ will copy /my/file to the directory selected by the user
as file.copy. If file.copy already exists, an extra suffix will be added as follows: file.copy-N, where
N is a positive integer (starting at 1).

If rsync(1) is found, it will be used as follows: ‘rsync -aczvAXHS --progress‘. Else, cp(1) will
be used: ‘cp -a‘.

dh [STRING] [PATH] [!ELN]
With no parameters, it prints the directory history list. To filter this list just pass a query string:
only entries matching this query will be displayed. In both cases, tab completion is available. For
example: ‘dh down<TAB>‘ will list only those entries matching down (fuzzily, if fuzzy-match-
ing is enabled).

To access a specific entry, you can pass the entry number preceded by an exclamation mark. For
example, if you want the entry number 12, enter ‘dh !12‘ to change to the corresponding directory.

Finally, if an absolute path is passed as first parameter, dh works just as the cd command.

Note: Take a look at the j command as well. Both commands deal with the list of visited directo-
ries, but in slightly different ways: while dh deals with the list of the last MaxDirhist entries (see
the configuration file), the j command deals with the ranked list of visited directories.

ds, desel [*, a, all | FILE]...
Deselect one or more files.

If no parameter is passed, the user is prompted to either mark selected files to be deselected or to
edit the selections file (entering ´e´) via a text editor to manually deselect files.

Use *, a or all to deselect all selected entries at once. E.g.: ‘ds *‘.

You can also pass the filename(s) (or ELNs) to be deselected as a parameter. For example: ‘ds my-
file 24‘.

Tab completion is available for this command: ‘ds <TAB>‘ will list all currently selected files.

exp [FILE]...
With no argument, export the list of files in the current directory to a temporary file. Otherwise,
export only those specified as further arguments: they can be directories, filenames, ELNs or some
search expression like "*.c".

ext [on | off | status]
Toggle the ability to execute external commands.

f, forth [h, hist | clear | !ELN]
This command works just like the back command, but it goes forward, instead of backward, in
the history record.

Run ‘f‘ to change to the next visited directory (you can also just press Alt+k or Shift+Right).

Of course, you can use ‘f hist‘, ‘f h‘, and ‘f !ELN‘ (consult the back command for details).

fc [on | off | status]
By default, clifm prints the number of files contained by listed directories next to directory names.
However, since this is an expensive feature, it might be desirable (for example, when listing files
on a remote machine) to disable this feature. Use the off subcommand to disable it. To

clifm 1.25 Apr 30, 2025 18

CLIFM(1) Clifm Manual CLIFM(1)

permanently disable it, use the FileCounter option in the configuration file.

ff, dirs-first [on | off | status]
Toggle list directories first.

ft, filter [unset] [[!]REGEX,=FILE-TYPE-CHAR]
Filter the current list of files, either by filename (via a regular expression) or file type (via a file
type character).

With no argument, ft prints the current filter. To remove the current filter use the unset option. To
set a new filter enter ‘ft‘ followed by a filter expression (use the exclamation mark to reverse the
meaning of a filter). Examples:

Exclude hidden files:
ft !ˆ.

List only files ending with .pdf:
ft .*\.pdf$

List only symbolic links:
ft =l

Exclude socket files:
ft !=s

The list of file type characters is included in the FILE FILTERS section below.

The filter will be lost at program exit. To permanently set a filter use the Filter option (in the con-
figuration file) or the CLIFM_FILTER environment variable (consult the ENVIRONMENT and
the FILE FILTERS sections below).

fz [on | off]
Toggle recursive directory sizes (long view only).

hf, hh, hidden [on | off | first | last | status]
Turn hidden files on/off (use first/last to sort hidden files before/after non-hidden files respec-
tively).

history [edit [APP] | clear | -N | on | off | status | show-time]
With no arguments, it prints the commands history list (use show-time to print timestamps as
well). If clear is passed as argument, it will delete all entries in the history file. Use edit to open
the history file and modify it as required (the file will be opened with APP, if specified, or with the
default associated application otherwise). -N tells the history command to list only the last ’N’
commands in the history list. Finally, you can disable history (subsequent entries will not be writ-
ten into the history file) via ‘history off‘ (you can also use the HistIgnore option in the configura-
tion file to prevent specific command lines from being added to the history list).

You can use the exclamation mark (!) to perform some history commands:
!<TAB>: List history entries
!!: Execute the last command.
!n: Execute the command number ´n´ in the history list.
!-n: Execute the ´last - n´ command in the history list.
!STRING: Execute the command starting with STRING. Tab completion is available in this case:

!STRING<TAB>.

icons [on | off]
Toggle icons.

clifm 1.25 Apr 30, 2025 19

CLIFM(1) Clifm Manual CLIFM(1)

Note: Depending on how the terminal renders icons, the apparent space between icons and file-
names may not be the most appropriate. This space can be adjusted using the IconsGap option in
the configuration file (valid values: 0, 1, 2).

j [--purge [NUM] | --edit], jc, jl, jp [STR]..., je
j is the fastest way of using Kangaroo, a directory jumper function used to quickly navigate
through the jump database (i.e. a database of visited directories).

With no argument, j just lists the entries in the jump database (1)(2), printing: a) order number of
the corresponding entry, b) total sum of visits, c) days since the first visit, d) hours since the last
visit, e) the rank value, and f) the directory name itself. An asterisk next to the rank value means
that the corresponding directory will not be removed from the database, despite its rank, either be-
cause it has been visited in the last 24 hours, or because it is bookmarked, pinned, or currently ac-
tive in some workspace.

(1) To prevent a directory from being added to the jump database use the DirhistIgnore option in
the main configuration file.

(2) To prevent a directory from being removed from the jump database, edit the database (‘j edit‘)
and prepend a plus sign (+) to the corresponding line.

Otherwise, if a query string is provided as parameter, B searches for this string in the database and
cd to the best ranked matching entry. Example: ‘j Down‘ will probably take you to
/home/user/Downloads, provided this directory has been already visited and is the best ranked
match in the database. For a more detailed description of the matching algorithm see the KANGA-
ROO FRECENCY ALGORITHM section below.

Multiple query strings can be passed to the function. For example, ‘j et mo‘ will first check for
"et" in the jump database and then will further filter the search using the second parameter: "mo".
It will most probably take you (again, provided the directory has been already visited and is the
best ranked match) to /etc/modprobe.d directory. Bear in mind that if STR is an actual directory,
jump will just cd to it without performing any query.

The backslash (\) and the slash (/) can be used to instruct Kangaroo to search for the string query
only in the first or last path segment of each entry in the database respectively. Let´s suppose we
have two entries matching src in the database: /media/src/images and /home/user/Down-
loads/clifm/src. If the first entry is better ranked than the second, ‘j src‘ will match this first entry.
However, if what we really want is the second entry, appending a slash to the query string instructs
Kangaroo to only match entries having src in the last path segment, here /home/user/Down-
loads/clifm/src.

Since it is not always obvious or easy to know where exactly a query string will take you, clifm (if
the suggestions system is enabled) will print, at the right of the cursor, the path matched by Kan-
garoo. If that is the actually intended path, press the Right arrow key to accept the suggestion.
Otherwise, it will be ignored. You can also use tab completion to print the list of matches for the
current query string. For example: ‘j - c<TAB>‘ to list all entries in the directory history list con-
taining a dash (-) and a ´c´.

The j command accepts four modifiers: e, p, c, and l, the first standing for "edit", the second for
"parent", the third for "child", and the last one for "list". Thus, ‘je‘ (or ‘j --edit‘) will open the
jump database to be edited as required; ‘jc‘ will search for files querying only child directories rel-
ative to the current working directory, while ‘jp‘ will do the same, but for parent directories. Fi-
nally, ‘jl‘ just prints the matches for the given query string(s), but without changing the current di-
rectory. Examples:

clifm 1.25 Apr 30, 2025 20

CLIFM(1) Clifm Manual CLIFM(1)

Command Description
Change to the best ranked parent directory containing the string "foo".jp foo

Change to the best ranked child directory containing the string "bar" and "test"jc bar test

Print all entries in the database containing the word "foo"jl foo

Use the --purge option to shrink the database. Without further parameters, --purge removes all
non-existent (un-stat´able) directories from the database. If a numeric parameter is passed, by
contrast, all entries ranked below this number will be removed from the database. For example, ‘j
--purge 100‘ will remove all entries ranked below 100.

You can also manually edit the database file using the ‘je‘ (or ‘j --edit‘) command: edit whatever
needs to be edited, save changes, and close the editor. This is useful, for example, to remove a spe-
cific entry/directory from the database (however, bear in mind that if the directory is in the direc-
tory history, it will not be removed from the jump database).

To mark an entry as permanent (prevent it from being removed from the database), follow any of
these procedures:
a. Bookmark it.
b. Edit the jump database (‘je‘ or ‘j --edit‘) and prepend a plus sign (+) to the corresponding en-
try.

An alternative way of navigating the jump database is using the jumper plugin (located in the plug-
ins directory and bound by default to the ++ action name), which uses fzf to enable fuzzy searches.
Enter ‘++‘ to perform a fuzzy search over the jump database.

Take a look at the dh command as well.

k
If running in long view, toggle follow-links (Alt++ is also available). See the -L,--follow-sym-
links-long command line switch.

kk
Toggle max-filename-len (Ctrl+Alt+l is also available)

kb, keybinds [list | bind FUNCTION | edit [APP] | conflict | reset | readline]
With no argument (or if the argument is list), prints the current keybindings and their associated
functions.

To change a keybinding use the bind subcommand.

Type ‘kb bind <TAB>‘ to get the list of bindable functions.

Enter ‘kb bind FUNCTION‘ to set a new keybinding for FUNCTION. For example, to bind the
function previous-dir to a new key, enter ‘kb bind previous-dir‘. You’ll see a little prompt: press
the key combination you want to associate to the specified function and then press Enter (while in
this prompt, press Ctrl+d to abort or Ctrl+c to clear the current line).

To manually edit your keybindings use the edit option (the keybindings file will be opened with
APP, if specified, or with the default associated application otherwise).

If you somehow messed up your keybindings, you can check for keybinding conflicts with the
conflict option, or use the reset option to create a fresh keybindings file with the default values.

To unbind a function run ‘kb edit‘ and comment out the corresponding entry. Note that some func-
tions may have several entries, associating them to multiple keybindings: comment them out all if

clifm 1.25 Apr 30, 2025 21

CLIFM(1) Clifm Manual CLIFM(1)

required.

To list readline keybindings (defined in ˜/.config/clifm/readline.clifm), use the readline option. The
syntax is the same as the one used by readline’s .inputrc file (consult
http://tiswww.case.edu/php/chet/readline/readline.html#SEC9 for more information.)

l, le
Create (l) or edit (le) symbolic links.

The syntax for the l command is: l TARGET [LINK_NAME]. Note that if LINK_NAME is omitted,
the symbolic link is created as TARGET_BASENAME.link in the current directory.

By default, the link target is created literally (like ‘ln -s‘ would). The link creation mode can be set
using the LinkCreationMode option in the configuration file. Available modes are: absolute, lit-
eral, and relative (like ‘ln -rs‘ would).

To edit the target of a symbolic link use the le command followed by the desired link name. The
user will be prompted to enter a new link target, using the current target as template.

ll, lv [on | off]
Toggle the long view.

lm [on | off]
Toggle the light mode. This option, aimed at making file listing faster than the default mode, is es-
pecially useful for really old hardware or when working on remote machines (for more informa-
tion see the NOTE ON SPEED section below).

log [cmd | msg] [list | on | off | status | clear]
Enable, disable, clear, list or check the status of the program logs, either message (errors and
warnings) or command logs. Example: ‘log cmd on‘, to enable command logs, or ‘log msg clear‘,
to clear/remove message logs.

Consult the FILES section below for information about how logs are written to the logs file.

media
Note: This command is Linux-specific

List available storage devices and mount/unmount the selected one using either udevil or udisks2
(at least one of these must be installed. udevil will be preferred over udisks2). If the device is un-
mounted, it will be automatically mounted, and if mounted, it will be automatically unmounted.

Though mountpoints are determined by the mounting application itself (udevil or udisks2), clifm
will automatically cd to the corresponding mountpoint whenever the mount operation was success-
ful.

When unmounting, and if the current directory is inside the mountpoint, clifm will attempt to cd to
the previous visited directory, and, if none, to the home directory, before unmounting the device.

To get information about a device, enter ‘iELN‘, for example, ‘i12‘, provided ´12´ is the ELN of
the device you want.

mf [NUM | unset]
List only up to NUM files (valid range: >= 0). Use unset to list all files (default). An indicator
(listed_files/total_files) will be printed below the list of files whenever some file is excluded from
the current list (e.g. 20/310). Note, however, that though some files are excluded, all of them are
loaded anyway, so that you can still perform any valid operation on them. For example, even if
only 10 files are listed, you can still search for all symbolic links in the corresponding directory
using the appropriate command: ‘/* -l‘.

clifm 1.25 Apr 30, 2025 22

CLIFM(1) Clifm Manual CLIFM(1)

mm, mime [open FILE | info FILE | edit [APP] | import]
This is Lira, clifm’s file opener.

Use the open subcommand to open a file with the default associated application. Note that, since
open is the default action, it can be omitted. For example: ‘mm file.pdf‘. The same can be
achieved more easily using the open command: ‘open file.pdf‘ (or using the short command, ‘o
file.pdf‘). Or, even shorter, just ‘file.pdf‘.

The info option prints MIME information about FILE: its MIME type, and, if any, the application
(for both opening and previewing) associated with this filename or with the file’s MIME type. If
the application is associated with the file’s name, [FILENAME] is printed after the associated ap-
plication, otherwise, if associated with the file’s MIME type, [MIME] is printed.

The edit option allows you to edit and customize the MIME list file. So, if a file has no default as-
sociated application, first get its MIME info or its file extension (running ‘mm info FILE‘), and
then add a value for it to the MIME list file using the edit option (‘mm edit‘ or F6). Check the
FILE OPENER section below for information about the mimelist file syntax.

Finally, via the import option clifm will try to import MIME associations from the system looking
for mimeapps.list files in those paths specified by the Freedesktop specification (see https://specifi-
cations.freedesktop.org/mime-apps-spec/mime-apps-spec-latest.html). If at least one MIME
association is successfully imported, it will be stored as mimelist.clifm.XXXXXX (where
XXXXXX is a random six digits alphanumerical string). You can add these new associations to
your mimelist file using the ‘mime edit‘ command.

mp, mountpoints
List available mountpoints and change the current working directory to the selected mountpoint.

msg, messages [clear]
With no arguments, prints the list of messages in the current session. The clear option tells clifm
to empty the messages list.

n, new [FILE[@TEMPLATE]]... [DIR/]...
Create new regular files and/or directories.

If a filename ends with a slash (/), it will be taken as a directory name. Else, it will be created as a
regular file. E.g.: ‘n myfile mydir/‘, to create a file named myfile and a directory named mydir. If
no filename is provided, the user will be prompted to enter one.

Automatic templates

New regular files will be created from a template file if:

1. The file to be created has a filename extension (e.g., file.html).
2. A file named like this extension, here html, exists in the templates directory (1).

If both conditions are met, running ‘n file.html‘ will create a new file named file.html which is a
copy of the html file in the templates directory.

Note that template names are not limited to actual file extensions: you can name your templates
whatever you like (with any content you want) provided new files are created using the template
name as extension. E.g.: ‘n file.my_super_cool_template‘.

Explicit templates

If a filename is followed by the expression @TEMPLATE, where TEMPLATE is any regular file

clifm 1.25 Apr 30, 2025 23

CLIFM(1) Clifm Manual CLIFM(1)

found in the templates directory(1), the file will be created as a copy of the corresponding file tem-
plate. E.g., ‘n file.sh@my_script.sh‘.

Tab completion is available for explicit templates: ‘n file@<TAB>‘.

(1) The templates directory is $CLIFM_TEMPLATES_DIR, $XDG_TEMPLATES_DIR, or
˜/Templates, in this precedence order.

Filename validation is performed over names before creation. In case of an unsafe name, the user
is warned and asked for confirmation.

A name (namely, any component of a path) is considered unsafe if:
1. Starts with a dash (-): command option flags collision
2. Is a reserved keyword/expression (internal): fastback (...), ELN/range (12, 1-45), and

MIME/file type expansion (@query, =x)
3. Is a reserved system/shell keyword (´˜´, ´.´ ,´..´)
4. Contains embedded control characters (0x00-0x1f in the ASCII table)
5. Contains embedded shell meta-characters (*?:[]"<>|(){}&’!\;$)
6. It is too long (larger than NAME_MAX, usually 255 bytes)

For more information about unsafe filenames consult https://dwheeler.com/essays/fix-
ing-unix-linux-filenames.html.

net [NAME | list | edit | m, mount NAME | u, unmount NAME]
1. The configuration file

The net command manages connections to remote systems via a simple samba-like configuration
file ($HOME/.config/clifm/profiles/PROFILE/nets.clifm). Here you can specify multiple remotes
and options for each of these remotes. Syntax example for this file:

[remote_name]
Comment=A nice descriptive comment
Mountpoint=/path/to/mountpoint
MountCmd=sudo mount.cifs //192.168.0.12/share %m -o OPTIONS
UnmountCmd=sudo umount %m
AutoUnmount=true (Auto-unmount this remote at exit)
AutoMount=false (Auto-mount this remote at startup)

Note: %m can be used as a placeholder for Mountpoint. %m will be replaced by the value of
Mountpoint.

1.a. Mounting remote filesystems

A Samba share:
[samba_share]
Comment=My samba share
Mountpoint="˜/.config/clifm/mounts/smb_share"
MountCmd=sudo mount.cifs //192.168.0.26/samba_share %m -o mapchars,creden-

tials=/etc/samba/credentials/samba_share
UnmountCmd=sudo umount %m
AutoUnmount=false
AutoMount=false

A SSH filesystem (sshfs):
[ssh_share]

clifm 1.25 Apr 30, 2025 24

CLIFM(1) Clifm Manual CLIFM(1)

Comment=My ssh share
Mountpoint="/media/ssh"
MountCmd=sshfs user@192.168.0.26: %m -C -p 22
UnmountCmd=fusermount3 -u %m
AutoUnmount=true
AutoMount=false

1.b. Mounting local filesystems

Though originally intended to manage remote filesystems, net can also manage local filesystems.
Just provide the appropriate mount and unmount commands. Since the device name assigned by
the kernel might change across reboots (specially when it comes to removable drives), it is recom-
mended to mount using the device´s UUID (Universal Unique Identifier) instead of the drive
name. For example:

MountCmd=sudo mount -U c98d91g4-6781... %m

Here´s an example of how to set up net to mount USB devices, one with a FAT filesystem, and an-
other with an ISO9660 filesystem:

[Sandisk USB]
Comment=Sandisk USB drive
Mountpoint="/media/usb"
MountCmd=sudo mount -o gid=1000,fmask=113,dmask=002 -U 5847-xxxx %m
UnmountCmd=sudo umount %m
AutoUnmount=false
AutoMount=false

[Kingston USB]
Comment=Kingston USB drive
Mountpoint="/media/usb2"
MountCmd=sudo mount -t iso9660 -U 2020-10-01-15-xx-yy-zz %m
UnmountCmd=sudo umount %m
AutoUnmount=false
AutoMount=false

Note: The gid, fmask, and dmask options are used to allow the user to access the mountpoint
without elevated privileges.

If the device data is unknown, as it often happens when it comes to removable devices, you should
use the media command instead.

2. Command syntax

Without arguments (or via the list subcommand), net lists the configuration for each remote avail-
able in the configuration file.

Use the edit option to edit the remotes configuration file. If no further argument is specified, the
file will be opened with the current file opener. However, you can pass an application as second
parameter to open to configuration file. For example: ‘net edit nano‘.

If not already mounted, the m, mount option mounts the specified remote using the mount com-
mand and the mounpoint specified in the configuration file and automatically cd to the correspond-
ing mountpoint. For example: ‘net mount smb_work‘. Since mount is the default action, it can

clifm 1.25 Apr 30, 2025 25

CLIFM(1) Clifm Manual CLIFM(1)

be omitted: ‘net smb_work‘.

The u, unmount option unmounts the specified remote using the unmount command specified in
the configuration file. For example: ‘net unmount smb_work‘. Tab completion is also available
for this function.

Note: If you only need to copy some files to a remote location (including mobile phones) without
the need to mount the resource, you can make use of the cprm.sh plugin, bound by default to the
cr action. Set up your remotes (‘cr --edit‘) and then send the file you want (‘cr FILE‘).

o, open FILE [APPLICATION]
Open FILE, which can be either a directory (in which case it works just like the cd command), a
regular file, or a symbolic link to either of the two. For example: ‘o 12‘, ‘o filename‘,
‘o /path/to/filename‘.

By default, the open command will open files with the default application associated to them via
Lira, the builtin file opener (see the mime command above). However, if you want to open a file
with a different application, add the application name as second argument, e.g. ‘o 12 leafpad‘ or
‘o12 leafpad‘.

If you want to run the program in the background, simply add the ampersand character, as usual:
‘o 12 &‘, ‘o 12&‘, ‘o12&‘ or (if auto-open is enabled) just ‘12&‘.

If the file to be opened is an archive/compressed file, the archive function (see the ad command
above) will be executed instead.

oc FILE...
Interactively change file ownership.

A new prompt is displayed using user and primary group common to all files passed as parameters
as ownership template.

Ownership (both user and primary group, if specified) is changed for all files passed as parameters.
If the file is a symbolic link, the operation is performed on the target file, and not on the symbolic
link itself. Bear in mind that recursion is not supported: use chown(1) (with the -R option) in-
stead.

Both names and ID numbers are allowed (Tab completion for names is available).

If only a name/number is entered, it is taken as the user who owns the file(s).

Use the pc command to edit files permissions.

opener [default | APPLICATION]
With no argument, prints the currently used file opener (by default, Lira, clifm´s builtin opener).
Otherwise, set APPLICATION (say rifle or xdg-open) as opener or, if default is passed instead,
use Lira.

ow FILE [APPLICATION]
If APPLICATION is specified, open FILE with APPLICATION. In case you need to add parame-
ters to APPLICATION, it is recommended to quote the expression: ‘ow FILE "APP ARG..."‘.

If APPLICATION is not specified, the list of available applications associated to FILE (either via
its MIME type or its file extension) is printed, allowing the user to choose one of these applica-
tions, and then open the file with the selected application.

This command supports tab completion. Type ‘ow FILE <TAB>‘ and the list of applications able

clifm 1.25 Apr 30, 2025 26

CLIFM(1) Clifm Manual CLIFM(1)

to open FILE will be displayed .

p, pp, prop FILE...
Print file properties for FILE. The output of this function is much like the combined output of the
shell commands‘ls -l‘ and ‘stat‘.

By default, directory sizes are not displayed. Use pp instead of just p to print directory sizes as
well (it could take longer depending on the directory’s content). On the other side, and unlike p,
pp provides information about the dereferenced symlinks (namely, the symlink target) instead of
the symlink itself. However, note that, in case of symbolic links to directories, p provides informa-
tion about the link target if the provided filename ends with a slash. Otherwise, information about
the link itself is displayed.

The time format used to display time information can be customized via the PTimeStyle option in
the configuration file (defaults to "%Y-%m-%d %H:%M:%S.%N %z", where %N stands for
nano-second precision).

If you need to list the properties of all files in the current directory, try the long view (ll or Alt+l).
Fields displayed in this mode can be customized using the PropFields option in the configuration
file. For custom timestamp formats use the TimeStyle option.

For more information about file details consult the file-details help topic: ‘help file-details‘.

pc FILE...
Interactively change file permissions (only traditional Unix permissions are supported).

A new prompt is displayed using actual permissions (in symbolic notation) of the file to be edited
as template. If editing multiple files with different sets of permissions, only shared permission bits
are set in the permissions template.

Bear in mind that, if editing multiple files at once, say ‘pc sel‘ or ‘pc *.c‘, the new permissions set
will be applied to all of them.

Both symbolic and octal notation for the new permissions set are allowed.

Recursively setting file permissions is not supported. Use chmod(1) with the -R flag instead.

If you just need to toggle the executable permission bit on a file, you can use the te command.

Use the oc command to edit files ownership.

pf, profile [ls, list | set, add, del PROFILE | rename PROFILE NEW_NAME]
With no arguments, prints the name of the currently used profile. Use the ls or list option to list
available profiles. To switch, add, delete, or rename a profile, use the set, add, del, and rename
options respectively.

pg, pager [on | off | once | status | NUM]
Run or set Mas, clifm’s builtin files pager.

With no parameter, just run the pager (Alt+0 is also available).

If set to on, run the pager whenever the list of files does not fit on the screen.

Set it to any positive integer greater than 1 to run the pager whenever the number of files in the
current directory is greater than or equal to this value, say 1000 (0 amounts to off and 1 to on).

Set to once to run the pager only a single time (overwriting whatever was its previous value).

clifm 1.25 Apr 30, 2025 27

CLIFM(1) Clifm Manual CLIFM(1)

While paging, the following keys are available:

?, h: Help
Down arrow, Enter, Space: Advance one line
Page down: Advance one page
q: Stop paging (without printing remaining files)
c: Stop paging (printing remaining files)

Note: To scroll lines up, use whatever your terminal emulator has to offer (e.g.: mouse scrolling or
some keybinding).

By default, the pager lists files using the current listing mode (long or short). Use PagerView in
the configuration file (or --pager-view in the command line) to force the use of a specific mode.
Possibles values:

auto: Use the current listing mode (default)
long: List files in long view
short: List files in short view

pin [FILE/DIR]
Pin a file or directory to be accessed later via the comma (,) keyword. For example, run ‘pin my-
dir‘ and then access mydir as follows: ‘cd ,‘ where the comma is automatically expanded to the
pinned file, in this case mydir. The comma keyword could be used with any command, either inter-
nal or external, e.g, ‘ls ,‘.

With no arguments, the pin command prints the current pinned file, if any. If an argument is given,
it will be taken as a filename to be pinned. Running this command again, frees the previous pinned
file and sets a new one. In other words, only one pin is supported at a time.

An easy alternative to create as many pins or shortcuts as you want, and how you want, is to use
the alias function. Bookmarks could also be used to achieve a very similar result.

At program exit, the pinned file is written to a file in the configuration directory (as .pin) to be
loaded in the next session.

prompt [set NAME | list | edit [APP] | unset | reload]
Manage clifm’s prompts. Use the set subcommand to temporarily change the current prompt to the
prompt named NAME (use the unset subcommand to unset the current prompt and set the default
one). Available prompts (which can be listed using ‘prompt list‘ or ‘prompt set <TAB>‘) are de-
fined in the prompts file ($HOME/.config/clifm/prompts.clifm). To permanently set a prompt, edit
your color scheme file (via the ‘cs edit‘ command) and set Prompt to either a prompt code or a
prompt name (as defined in the prompts file).

q, quit, exit
Quit clifm.

rf, refresh
Refresh the screen, that is, reprint files in the current directory and update the prompt. If the cur-
rent directory is not accessible for any reason, rf will go up until it finds an accessible one and
then will change to this directory.

rl, reload
Reload all settings, except those passed as command line arguments, from the configuration file.

rr [DIR] [EDITOR]
Remove files and/or directories in bulk using a text editor.

rr writes all filenames in DIR (or in the current directory if DIR is omitted) to a temporary file and

clifm 1.25 Apr 30, 2025 28

CLIFM(1) Clifm Manual CLIFM(1)

opens it using EDITOR (or the default associated application for text/plain MIME type, if EDITOR
is omitted).

Once in the editor, remove the lines corresponding to the files you want to delete. Save changes
and close the editor. Removed files will be listed and the user asked for confirmation.

s, sel FILE... [[!]PATTERN] [-FILETYPE] [:PATH]
Mark one or more files (either regular files or directories) as selected (send to the Selection Box).
sel accepts individual elements, range of elements, say 1-6, filenames and paths, just as wildcards
(globbing) and regular expressions. For example: ‘s 1 4-10 ˆr file* filename /path/to/filename‘.

If not in light mode, once a file is selected, and if the file is in the current directory, the corre-
sponding filename will be highlighted with a mark (colored according to the value of li in the color
scheme file (by default bold green)) at the left of the filename (and at the right of its ELN).

Just as in the search function, it is also possible to further filter the list of matches indicating the
desired file type. For instance, ‘s ˆ -d‘ will select all directories in the current directory. For avail-
able file type filters see the search function above.

By default, the selection function operates on the current working directory. To select files in any
other directory use the ":PATH" expression. For example, to select all regular files with a .conf ex-
tension in the /etc directory, the command would be: ‘s .*\.conf$ -f :/etc‘, or using wildcards: ‘s
.conf -f :/etc‘. Of course, you can also do just ‘s -f /etc/.conf‘.

Just as in the case of the search function, inverse matching is supported for patterns, either wild-
cards or regular expressions. To invert the meaning and action of a pattern, prepend an exclama-
tion mark (!). E.g., to select all non-hidden regular files in the Documents directory, issue this
command: ‘s !ˆ. -f :Documents‘, or, to select all directories in /etc, except those ending with ".d":
‘s !*.d -d :/etc‘.

Glob and regular expressions can be used together. For example: ‘s ˆ[r|R].*d$ /etc/*.conf‘ will se-
lect all files starting with either ’r’ or ’R’ and ending with ’d’ in the current directory, plus all .conf
files in the /etc directory. However, this use is discouraged if both patterns refer to the same direc-
tory, since the second one will probably override the result of the first one.

It is important to note that glob expressions are evaluated before regular expressions, in such a way
that any pattern that could be understood by both kinds of pattern matching mechanisms will be
evaluated first according to the former, that is, as a glob expression. For example, ’.*’, as regular
expression, should match all files. However, since glob expressions are evaluated first, it will only
match hidden files. To select all files using a glob expression, try ´.* *´, or, with a regular expres-
sion: ´ˆ´ or ´(.*?)´. The keyboard shortcut Alt+a is also available to perform the same operation.

The Selection Box is accessible from different instances of the program, provided they use the
same profile (see the profile command below). By default, indeed, each profile keeps a private Se-
lection Box, being thus not accessible to other profiles. You can nonetheless modify this behavior
via the ShareSelbox option in the configuration file. If ShareSelbox is enabled, selected files are
stored in /tmp/clifm/username/.selbox.clifm. Otherwise, /tmp/clifm/username/.selbox_profile-
name.clifm is used (this is the default).

Operating on selected files

To operate on one or more selected files use the sel keyword (s: can be used as well). For example,
to print the file properties of all selected files: ‘p sel‘ (or ‘p s:)‘. Use ‘s:<TAB>‘ to list selected
files (multi-selection is available if running in fzf mode).

clifm 1.25 Apr 30, 2025 29

CLIFM(1) Clifm Manual CLIFM(1)

Listing selected files

To list selected files use the sb command (standing for Selection Box). You can also type
‘s:<TAB>‘.

Deselecting files

To deselect files use the ds command (see above). You can also press Alt+d to deselect all files at
once.

Note: If there is a file named sel in the current directory, use ./sel to distinguish it from the sel
keyword. For example, enter ‘p ./sel‘ to tell clifm that you want to get the properties of the file
named sel rather than the properties of the currently selected files.

For more information consult the BUILT-IN EXPANSIONS section below.

sb, selbox
Print the elements currently contained in the Selection Box.

st, sort [METHOD] [rev]
With no argument, print the current sort order. Else, sort files by METHOD, where METHOD is
one of: 0=none, 1=name, 2=size, 3=atime, 4=btime, 5=ctime, 6=mtime, 7=version, 8=extension,
9=inode, 10=owner, 11=group, 12=blocks, 13=links, or 14=type (e.g.: st atime or st 3). Methods
10 and 11 sort by owner and group ID names if using ID names in long view (see the PropFields
option in the configuration file). Else, ID numbers are used. The default order is version.

By default, files are sorted from less to more (e.g.: from ´a´ to ´z´ if sorting by name). Use the rev
subcommand to invert this order. E.g.: ‘st rev‘ or ‘st inode rev‘. Switch back to the previous state
by running ‘st rev‘ again.

Take a look at the configuration file for extra sort options (ListDirsFirst, PrioritySortChar,
ShowHiddenFiles).

stats
Print file statistics for files in the current directory (not available in light mode).

t, trash [FILE... | ls, list | clear, empty | del [FILE]...]
Move specified files to the trash can (e.g. ‘t file1 file2‘).

With no argument (or by passing the ls option), it prints the list of currently trashed files. The
clear (or empty) sucommand removes all files from the trash can, while the del subcommand lists
trashed files allowing the user to permanently remove one or more trashed files. If using del, tab
completion to list/select currently trashed files is available.

The trash directory is $XDG_DATA_HOME/Trash, falling back to $HOME/.local/share/Trash. To
set an alternative trash directory use the -T,--trash-dir command line option.

Since this trash system follows the Freedesktop specification, it is able to handle files trashed by
different Trash implementations.

To restore trashed files (to their original location) see the untrash command below.

tag [add | del | list | list-full | new | merge | rename | untag] [FILE]... [[:]TAG]
tag is the main Etiqueta command, clifm’s builtin files tagging system. See the FILE TAGS sec-
tion for a complete description of this command.

clifm 1.25 Apr 30, 2025 30

CLIFM(1) Clifm Manual CLIFM(1)

te FILE...
Toggle the executable bit (on user, group, and others) on FILE(s). It is equivalent to the -x and +x
options for the chmod(1) command.

tips
Print the list of clifm tips.

u, untrash [*, a, all | FILE]...
If filenames are passed as parameters, restore them to their original location. Otherwise, this func-
tion prints a list of currently trashed files allowing the user to choose one or more of these files to
be restored. Use the *, a or all parameters to restore all trashed files at once. Tab completion to
list/select currently trashed files is available.

unpin
This command takes no argument. It just frees the current pin and, if it exists, deletes the .pin file
generated by the pin command.

vv FILE... DIR
Copy FILE(s) to DIR and bulk rename them at once.

ver, version
Show clifm version details.

view [edit [APP] | purge]
preview files in the current directory (full screen). Requires fzf(1). Alt+- is also available.

By pressing Enter or Right, the currently highlighted file will be selected and view closed. To se-
lect multiple files, mark them with the TAB key and then press Enter or Right to confirm. To quit
view press Escape or the Left arrow key.

Run ‘view purge‘ to purge the thumbnails directory ($XDG_CACHE_HOME/clifm/thumbnails) of
dangling thumbnails.

To edit the previewer configuration file enter ‘view edit‘, or ‘view edit vi‘ to open it with a spe-
cific application, in this case, vi(1).

For image previews consult the Wiki (https://github.com/leo-arch/clifm/tree/mas-
ter/misc/tools/imgprev) or enter ‘help image-previews‘.

For further information consult the SHOTGUN section below.

ws [NUM/NAME | unset | + | -]
Clifm offers up to eight workspaces, each with its own independent path.

With no argument, the ws command prints the list of workspaces and its corresponding paths,
highlighting the current workspace.

Use NUM to switch to the workspace number NUM, NAME to switch to the workspace named
NAME, the plus sign (+) to switch to the next workspace, and the minus sign (-) to switch to the
previous workspace.

To unset a workspace use the unset subcommand preceded by the workspace (either number or
name) to be unset. For example: ‘ws 2 unset‘.

Four keyboard shortcuts are available to easily switch to any of the first four workspaces:
Alt+[1-4].

Every time an empty workspace is created, it starts in the current working directory.

clifm 1.25 Apr 30, 2025 31

CLIFM(1) Clifm Manual CLIFM(1)

Though by default workspaces are unnamed, you can name them however you like using the
WorkspaceNames option in the configuration file.

Use autocommands to persistenly set options per workspace, for example, to always list files in the
third workspace in long view. See the AUTOCOMMANDS section below for more information.

Make local settings private to the current workspace by setting the PrivateWorkspaceSettings op-
tion to true in the configuration file: settings changed via either the command line or keyboard
shortcuts (say Alt+l, to toggle the long view) will apply only to the current workspace and will be
remembered even when switching workspaces.

To directly operate on a workspace (namely, the path it points to) you can use the w: prefix fol-
lowed by a workspace number or name. For example, to copy all .png files in the current directory
to the third workspace, enter ‘c *.png w:3‘. Press TAB immediately after w: to get the list of avail-
able workspaces.

x, X [DIR]
Open DIR, or the current working directory if DIR is not specified, in a new instance of clifm (as
root if X, as the current unprivileged user if x) using the value of TerminalCmd (from the config-
uration file) as terminal emulator. If this value is not set, xterm will be used as fallback terminal
emulator. This function is only available for graphical environments.

Shell-builtins implementations

pwd [-LP]

Print the current working directory

export NAME=VALUE...

Export variables to the environment

umask [VALUE]

Print/set the current umask value

unset NAME

Remove a variable from the environment

5. FILE FILTERS
Clifm provides multiple ways to filter the current list of files:

a) Hidden files: via the -A and -a command line flags, the hh command, and the Alt+. keybinding.

Files listed in a file named .hidden in the current directory will be hidden as well whenever hidden files are
not shown (wildcards are supported).

b) Directories: via the --only-dirs command line switch and the Alt+, keybinding.

c) Filenames and file types: either via a regular expression or a file type character (see below) using the ft
command (the Filter option in the configuration file and the CLIFM_FILTER environment variable are
also available). For example, to exclude backup files (ending with a tilde):

CLIFM_FILTER=´!.*˜$´ clifm

clifm 1.25 Apr 30, 2025 32

CLIFM(1) Clifm Manual CLIFM(1)

or (in the configuration file):

Filter="!.*˜$"

or (via the ft command):

ft !.*˜$

See the ft command for a few more examples.

d) Filtering files via the TAB key:

You can filter files by name using wildcards. For example: ‘p *.mp3<TAB>‘ (or ‘/*.mp3<TAB>‘) to get a
list of MP3 files in the current directory.

Files can also be filtered by MIME-type using the @ prefix. Type ‘@<TAB>‘ to list all MIME-types
found in the current directory, or ‘@query<TAB>‘ to list all files whose MIME-type includes the string
"query". For example, ‘@image<TAB>‘ will list all files in the current directory whose MIME type in-
cludes the string "image".

Finally, files can be filtered as well by file type using the = prefix followed by a file type character (see be-
low). For example, ‘=l<TAB>‘ to get a list of symbolic links in the current directory.

Note: If using tab completion in fzf mode, multi-selection is allowed (except in the case of ‘@<TAB>‘).

Available file type characters:

b: Block devices
c: Character devices
C: Files with capabilities (1)(2)
d: Directories
D: Empty directories
f: Regular files
F: Empty regular files
g: SGID files (2)
h: Multi-hardlink files (directories excluded)
l: Symbolic links
L: Broken symbolic links
o: Other-writable files (2)
p: FIFO/pipes (2)
s: Sockets (2)
O: Doors (Solaris only)
P: Event ports (Solaris only)
t: Files with the sticky bit set (2)
u: SUID files (2)
x: Executable files (2)

(1) Only for tab completion
(2) Not available in light mode

e) Grouping files (via automatic expansion):

By means of the above features, you can easily group and operate on groups of files. For example, this
command:

clifm 1.25 Apr 30, 2025 33

CLIFM(1) Clifm Manual CLIFM(1)

vt b: @image =x sel t:work *.txt

opens a virtual directory (see the VIRTUAL DIRECTORIES section below) automatically expanding the
above expressions as follows:

Expression Description
b: All your bookmarks (paths)

@image All image files (CWD)

=x All executable files (CWD)

sel All selected files

t:work All files tagged as work

*.txt All .txt files (CWD)

6. KEYBOARD SHORTCUTS
The following is the list of default keyboard shortcuts:

Key Description
Ctrl+Alt+j Toggle the vi editing mode

Right, Ctrl+f Accept the current suggestion

Alt+Right, Alt+f Accept the first suggested word (up to the first slash or space)

Alt+c Clear the current command line buffer

Alt+q Delete last word (up to last slash or space)

Alt+i, Alt+. Toggle hidden-files

Alt+l Toggle long-view

Alt++ Toggle follow-links (long view only)

Alt+g Toggle list-directories-first

Alt+, Toggle list-only-directories

Ctrl+Alt+l Toggle max-filename-length

Ctrl+Alt+i, Alt+Tab Toggle disk-usage-analyzer

Alt+w Toggle full-path-filenames (virtual directories)

Ctrl+l Refresh the screen (reprint the list of files in the current directory)

Alt+t Clear program messages

Alt+m List mountpoints

Alt+b Launch the Bookmark Manager

Alt+h Show the directory history

Alt+n Create new file or directory

Alt+s Open the Selection Box

Alt+- Launch the file previewer (view command)

Alt+a Select all files in the current directory

Alt+d Deselect all files

Alt+0 Run MAS, the file pager

Alt+p Change to the pinned directory

Alt+1 Switch to workspace 1

Alt+2 Switch to workspace 2

Alt+3 Switch to workspace 3

Alt+4 Switch to workspace 4

clifm 1.25 Apr 30, 2025 34

CLIFM(1) Clifm Manual CLIFM(1)

Key Description
Alt+r Change to the root directory

Alt+e, Home Change to the home directory

Alt+u, Shift+Up Change to the parent directory

Alt+j, Shift+Left Change to the previously visited directory

Alt+k, Shift+Right Change to the next visited directory

Ctrl+Alt+o Switch to the previous profile

Ctrl+Alt+p Switch to the next profile

Ctrl+Alt+a Archive selected files

Ctrl+Alt+e Export selected files

Ctrl+Alt+r Rename selected files

Ctrl+Alt+d Remove selected files

Ctrl+Alt+t Trash selected files

Ctrl+Alt+v Copy selected files to the current directory

Alt+y Toggle light-mode

Alt+z Switch to previous sort method

Alt+x Switch to next sort method

Ctrl+Alt+x Launch a new instance of clifm
Ctrl+y Copy the contents of the line buffer to the clipboard (1)
F1 Go to the manpage

F2 List commands

F3 List keybindings

F6 Open the MIME list file

F7 Open the shotgun configuration file

F8 Open the current color scheme file

F9 Open the keybindings file

F10 Open the main configuration file

F11 Open the bookmarks file

F12 Quit

(1) This shortcut is bound to the xclip plugin. See the PLUGINS section below for more information.

Customizing keybindings

The above are the default keyboard shortcuts. However, they can be customized using the ‘kb bind‘ com-
mand (for more information consult the description for the kb command above).

The keybindings configuration file can also be manually edited using the ‘kb edit‘ command (for more de-
tails take a look at the description provided by this file itself).

Readline keybindings

Readline keybindings for command line editing, such as Ctrl+a, to move the cursor to the beginning of the
line, or Ctrl+e, to move it to the end, should work out of the box. Of course, you can modify these keybind-
ings by editing the ˜/.config/clifm/readline.clifm file, following the same rules used by readline itself for the
˜/.inputrc file. For more information consult the readline documentation (readline(3)).

Keybindings for plugins

clifm provides sixteen customizable keybindings for custom plugins. The procedure for setting a keybind-
ing for a plugin is the following:

clifm 1.25 Apr 30, 2025 35

CLIFM(1) Clifm Manual CLIFM(1)

1. Copy your plugin to the plugins directory (or use any of the plugins already in there)

2. Link pluginx (where ´x´ is the plugin number [1-16]) to your plugin using the ‘actions edit‘ command.
E.g.: "plugin1=myplugin.sh"

3. Set a keybinding for pluginx using the ‘kb edit‘ command. E.g.: "plugin1:\M-7"

Kitty keyboard protocol support

The Kitty Keyboard Protocol offers a significant improvement over the current handling of keyboard events
in terminals. This protocol utilizes CSI u escape sequences and introduces several enhancements, including
the ability to use extra modifier keys such as Super, Meta, and Hyper.

To enable the Kitty Keyboard Protocol, follow these steps:

1. Download the specially crafted keybindings configuration file designed to handle CSI u escape se-
quences (https://github.com/leo-arch/clifm/blob/master/misc/kitty/keybindings.clifm).

2. Configure clifm to use this new file instead of the default one (˜/.config/clifm/keybindings.clifm) by using
the -k command line switch. Alternatively, you can replace the default file with the new one.

3. If your terminal is not already set up to send CSI u sequences, use the --kitty-keys command line
switch.

Summarizing, and once you have the replacement keybindings file in place, run the following command:

clifm -k /path/to/keybindings/file --kitty-keys

Important

When using the Kitty Keyboard Protocol, the Ctrl+d shortcut (used to quit secondary prompts) will no
longer work. To resolve this issue, add the following line to your kitty.conf file:

map control+d send_text kitty \x04

This will force the terminal to emit the old value for this specific key binding, providing a workaround for
the issue.

Troubleshooting

Some of these default keybindings may not work on your console/terminal emulator, depending on your
system. Some useful tips on this regard:

Haiku terminal: Most of these keybindings will not work on the Haiku terminal, since Alt plays here the
role Ctrl usually plays in most other systems (see the Haiku documentation). To fix this, set your custom
keybindings.

Kernel builtin console: Key sequences involving the Shift key (Shift-Up, Shift-Left, and Shift-Right in
our case) will just not work. Use the alternative key sequences instead: Alt+u, Alt+j, and Alt+k respec-
tively.

NetBSD (wsvt25) and OpenBSD (vt220) kernel consoles: Key sequences involving the Alt key will not
work out of the box. Here´s how to make them work:

On OpenBSD:
1) Copy /etc/examples/wsconsctl.conf to /etc (if it does not already exist)
2) Add the metaesc flag to your current keyboard encoding. For example: keyboard.encod-
ing=us.metaesc
You may need to reboot the machine for changes to take effect.

On NetBSD:
Add the metaesc flag to your current encoding in /etc/wscons.conf. For example: encoding
us.metaesc
You may need to reboot the machine for changes to take effect.

clifm 1.25 Apr 30, 2025 36

CLIFM(1) Clifm Manual CLIFM(1)

Konsole: If Shift+left and Shift+right are not already bound to any function, you need to bind them manu-
ally. Go to Settings -> Edit current profile -> Keyboard -> Default (Xfree4), and add these values:

Left+Shift \E[1;2D
Right+Shift \E[1;2C

If they are already bound, by contrast, you only need to unbound them. Go to "Settings -> Config-
ure keyboard shortcuts", click on the corresponding keybinding, and set it to "Custom (none)").

Terminology/Yakuake: Shift+left and Shift+right are already bound to other functions, so that you only
need to unbind them or rebind the corresponding functions to different key sequences.

Of course, the above two procedures should be similar in case of keybinding issues in other terminal emula-
tors.

In case some of these keybindings are already used by your Window Manager, you only need to unbind the
key or rebind the corresponding function to another key. Since each Window Manager uses its own mecha-
nisms to set/unset keybindings, you should consult the appropriate manual.

7. THEMING
All customization settings (theming) are made from a single configuration file (the color scheme file), in-
stalled by default in $XDG_DATA_DIRS/clifm/colors (usually /usr/local/share/clifm/colors or
/usr/share/clifm/colors), though color scheme files found in $XDG_CONFIG_HOME/clifm/colors (usually
$HOME/.config/clifm/colors) take precedence.

Note: Color scheme files are copied automatically to the local colors directory when running the ‘cs edit‘
command.

Each color scheme may include any (or all) of the below options:

FiletypeColors = Colors for different file types, such as directory, regular files, and so on. See the COL-
ORS section below.

InterfaceColors = Colors for clifm’s interface, such as ELNs, file properties bits, suggestions, syntax
highlighting, etc. See the COLORS section below.

ExtColors = Colors for files based on filename extensions. See the COLORS section below.

DateShades = A comma delimited list of colors used to print timestamps (long view). Consult the default
color scheme file for more information.

SizeShades = A comma delimited list of colors used to print file sizes (long view). Consult the default
color scheme file for more information.

DirIconColor = Color for the directory icon (when icons are enabled). See the COLORS section below.
Only when using icons-in-terminal or Nerfonts. If using rather emoji-icons (default build), this option is
ignored.

Prompt = Define clifm´s prompt. See the THE PROMPT section below.

DividingLine = The line dividing the current list of files and the prompt. See the THE DIVIDING LINE
below.

FzfTabOptions = Options to be passed to fzf when using the fzf mode for tab completion, including col-
ors. See the TAB COMPLETION section below.

The color scheme (or just theme) can be set either via the command line (--color-scheme=NAME), via
the ColorScheme option in the main configuration file, or using the cs command, for instance, ‘cs
mytheme‘. Enter just ‘cs‘ to list available color schemes (tab completion is available). To edit the current
color scheme enter ‘cs edit‘.

1. COLORS

If 256 colors support is detected for the current terminal, and not set in any other way (either via the Col-
orScheme option in the configuration file or the --color-scheme command line switch), clifm will at-
tempt to load the 256 colors version of the default color scheme: default-256. Otherwise, it falls back to the

clifm 1.25 Apr 30, 2025 37

CLIFM(1) Clifm Manual CLIFM(1)

16 colors version.

All color codes are specified in the corresponding color scheme file (by default ˜/.config/clifm/colors/de-
fault.clifm). You can edit this file pressing F8 or entering ‘cs edit‘.

a. Color codes

Colors are specified using the same format used by dircolors(1) and the LS_COLORS environment vari-
able, namely, a colon separated list of codes with this general format: NAME=VALUE, where NAME refers
to an interface element, and VALUE to the color to be used by this element.

This is the list of file type codes (you will find them in the FiletypeColors section of the current color
scheme file):

di = directory
ed = empty directory
nd = directory with no read/exec permission (1)
fi = regular file
ef = empty regular file
nf = file with no read permission (1)
ln = symlink
mh = multi-hardlink file
or = orphaned or broken symlink
bd = block device
cd = character device
pi = FIFO, pipe
so = socket
su = SUID file
sg = SGID file
tw = sticky and other writable directory
st = sticky and not other writable directory
ow = other writable directory
ex = executable file
ee = empty executable file
ca = file with capabilities
oo = door/port (Solaris only)
no = unknown file type
uf = unaccessible files (fstatat(3) error)

(1) If unset, the corresponding file type color is used and an exclamation mark is printed before the
filename in the file list (provided icons are disabled -otherwise the lock icon is used- and clifm is
not running in light mode -in light mode access checks are not performed). The color used for the
exclamation mark is xf (see below).

The following codes are used for different interface elements (in the InterfaceColors section of the current
color scheme file):

Suggestions
sb = shell builtins
sc = aliases and shell command names
sd = internal commands description
sf = ELNs, bookmarks, tag, and filenames
sh = commands history entries
sx = suggestions for clifm’s internal commands and parameters
sp = suggestions pointer (e.g.: 56 > filename, where ’>’ is the suggestion pointer)
sz = filenames (fuzzy)

clifm 1.25 Apr 30, 2025 38

CLIFM(1) Clifm Manual CLIFM(1)

Syntax highlighting
hb = brackets ´()[]{}´
hc = comments (lines starting with ’#’)
hd = slashes
he = expansion chars ´˜*´
hn = numbers
hp = option parameters (starting with ´-´)
hq = quoted strings (both single and double quotes)
hr = process redirection (>)
hs = process separators (; & |)
hv = variable names (starting with ´$´)
hw = Backslash (aka whack)

Prompt elements
li = selected files
ti = trash indicator
ac = autocommand indicator
em = error message indicator
wm = warning message indicator
nm = notice message indicator
ro = read-only mode indicator
si = stealth mode indicator
tx = command line text (regular prompt)

File properties
db = file allocated blocks
dd = last access/change/modification time (1)
de = file inode number (long view only)
dg = group ID (provided the user has access to the file)
dk = number of links (long view only)
dn = dash (unset property)
do = octal value for file properties
dp = SUID, SGID, sticky bit
dr = read permission bit
dt = timestamp identification mark (2)
du = user ID (provided the user has access to the file)
dw = write permission bit
dxd = executable permission bit (directories)
dxr = executable permission bit (regular files)
dz = size (1)

(1) If unset (default), gradient colors are used (based on file size and file age).
(2) If unset (default), a dimmed version of the current timestamp color is used.

Note: For a better graphical representation of file properties, 256 colors are used if possible (oth-
erwise, clifm falls back to 16 colors).

Miscellaneous interface elements
fc = file counter
df = default color
dl = dividing line
el = ELN color
lc = symbolic link indicator (ColorLinksAsTarget only)
mi = misc indicators (disk usage, sort method, bulk rename, jump database list)

clifm 1.25 Apr 30, 2025 39

CLIFM(1) Clifm Manual CLIFM(1)

ts = matching suffix for possible tab completed entries
tt = tilde for truncated filenames
wc = welcome message
wsN = color for workspace N (1-8)
xs = exit code: success
xf = exit code: failure

b. Supported colors

4-bit, 8-bit (256-colors), and 24-bit (true colors) colors are supported.

Colors are defined basically as SGR sequences (excluding the initial escape character and the ending ’m’),
the same sequences used by the LS_COLORS environment variable. However, shortcuts for 8-bit
(256-colors) and 24-bit (true color) colors are available. For example:

31 4-bit
38;5;160 8-bit
@160 8-bit (short)
38;2;255;0;0 24-bit
#ff0000 24-bit (short, HEX) (1)

(1) Both three and six digits hexadecimal colors (lower or uppercase) are supported. For example, #f00
amounts to #ff0000.

A single attribute can be added to hex colors and 256 colors (in the form @NUM) using a dash and an at-
tribute number (#RRGGBB-[1-9] or @NUM-[1-9]), where 1-9 is:

1: Bold or increased intensity
2: Faint, decreased intensity or dim
3: Italic (Not widely supported)
4: Underline
5: Slow blink
6: Rapid blink
7: Reverse video or invert
8: Conceal or hide (Not widely supported)
9: Crossed-out or strike

Note: Some attributes may not be supported by all terminal emulators.

For example, for bold red the hex code is #ff0000-1, while the 256-colors code is @160-1. (for more in-
formation about SGR sequences consult https://en.wikipedia.org/wiki/ANSI_escape_code).

c. Color names

Xterm-like color names are also supported. For example: ex=DodgerBlue2.

This is the list of color names (as defined by vifm(1)):

0 Black 86 Aquamarine1 172 Orange3
1 Red 87 DarkSlateGray2 173 LightSalmon3_2
2 Green 88 DarkRed_2 174 LightPink3
3 Yellow 89 DeepPink4_2 175 Pink3
4 Blue 90 DarkMagenta 176 Plum3
5 Magenta 91 DarkMagenta_2 177 Violet
6 Cyan 92 DarkViolet 178 Gold3_2
7 White 93 Purple 179 LightGoldenrod3
8 LightBlack 94 Orange4_2 180 Tan
9 LightRed 95 LightPink4 181 MistyRose3
10 LightGreen 96 Plum4 182 Thistle3
11 LightYellow 97 MediumPurple3 183 Plum2

clifm 1.25 Apr 30, 2025 40

CLIFM(1) Clifm Manual CLIFM(1)

12 LightBlue 98 MediumPurple3_2 184 Yellow3_2
13 LightMagenta 99 SlateBlue1 185 Khaki3
14 LightCyan 100 Yellow4 186 LightGoldenrod2
15 LightWhite 101 Wheat4 187 LightYellow3
16 Grey0 102 Grey53 188 Grey84
17 NavyBlue 103 LightSlateGrey 189 LightSteelBlue1
18 DarkBlue 104 MediumPurple 190 Yellow2
19 Blue3 105 LightSlateBlue 191 DarkOliveGreen1
20 Blue3_2 106 Yellow4_2 192 DarkOliveGreen1_2
21 Blue1 107 DarkOliveGreen3 193 DarkSeaGreen1_2
22 DarkGreen 108 DarkSeaGreen 194 Honeydew2
23 DeepSkyBlue4 109 LightSkyBlue3 195 LightCyan1
24 DeepSkyBlue4_2 110 LightSkyBlue3_2 196 Red1
25 DeepSkyBlue4_3 111 SkyBlue2 197 DeepPink2
26 DodgerBlue3 112 Chartreuse2_2 198 DeepPink1
27 DodgerBlue2 113 DarkOliveGreen3_2 199 DeepPink1_2
28 Green4 114 PaleGreen3_2 200 Magenta2_2
29 SpringGreen4 115 DarkSeaGreen3 201 Magenta1
30 Turquoise4 116 DarkSlateGray3 202 OrangeRed1
31 DeepSkyBlue3 117 SkyBlue1 203 IndianRed1
32 DeepSkyBlue3_2 118 Chartreuse1 204 IndianRed1_2
33 DodgerBlue1 119 LightGreen_2 205 HotPink
34 Green3 120 LightGreen_3 206 HotPink_2
35 SpringGreen3 121 PaleGreen1 207 MediumOrchid1_2
36 DarkCyan 122 Aquamarine1_2 208 DarkOrange
37 LightSeaGreen 123 DarkSlateGray1 209 Salmon1
38 DeepSkyBlue2 124 Red3 210 LightCoral
39 DeepSkyBlue1 125 DeepPink4_3 211 PaleVioletRed1
40 Green3_2 126 MediumVioletRed 212 Orchid2
41 SpringGreen3_2 127 Magenta3 213 Orchid1
42 SpringGreen2 128 DarkViolet_2 214 Orange1
43 Cyan3 129 Purple_2 215 SandyBrown
44 DarkTurquoise 130 DarkOrange3 216 LightSalmon1
45 Turquoise2 131 IndianRed 217 LightPink1
46 Green1 132 HotPink3 218 Pink1
47 SpringGreen2_2 133 MediumOrchid3 219 Plum1
48 SpringGreen1 134 MediumOrchid 220 Gold1
49 MediumSpringGreen 135 MediumPurple2 221 LightGoldenrod2_2
50 Cyan2 136 DarkGoldenrod 222 LightGoldenrod2_3
51 Cyan1 137 LightSalmon3 223 NavajoWhite1
52 DarkRed 138 RosyBrown 224 MistyRose1
53 DeepPink4 139 Grey63 225 Thistle1
54 Purple4 140 MediumPurple2_2 226 Yellow1
55 Purple4_2 141 MediumPurple1 227 LightGoldenrod1
56 Purple3 142 Gold3 228 Khaki1
57 BlueViolet 143 DarkKhaki 229 Wheat1
58 Orange4 144 NavajoWhite3 230 Cornsilk1
59 Grey37 145 Grey69 231 Grey100
60 MediumPurple4 146 LightSteelBlue3 232 Grey3
61 SlateBlue3 147 LightSteelBlue 233 Grey7
62 SlateBlue3_2 148 Yellow3 234 Grey11
63 RoyalBlue1 149 DarkOliveGreen3_3 235 Grey15
64 Chartreuse4 150 DarkSeaGreen3_2 236 Grey19
65 DarkSeaGreen4 151 DarkSeaGreen2 237 Grey23

clifm 1.25 Apr 30, 2025 41

CLIFM(1) Clifm Manual CLIFM(1)

66 PaleTurquoise4 152 LightCyan3 238 Grey27
67 SteelBlue 153 LightSkyBlue1 239 Grey30
68 SteelBlue3 154 GreenYellow 240 Grey35
69 CornflowerBlue 155 DarkOliveGreen2 241 Grey39
70 Chartreuse3 156 PaleGreen1_2 242 Grey42
71 DarkSeaGreen4_2 157 DarkSeaGreen2_2 243 Grey46
72 CadetBlue 158 DarkSeaGreen1 244 Grey50
73 CadetBlue_2 159 PaleTurquoise1 245 Grey54
74 SkyBlue3 160 Red3_2 246 Grey58
75 SteelBlue1 161 DeepPink3 247 Grey62
76 Chartreuse3_2 162 DeepPink3_2 248 Grey66
77 PaleGreen3 163 Magenta3_2 249 Grey70
78 SeaGreen3 164 Magenta3_3 250 Grey74
79 Aquamarine3 165 Magenta2 251 Grey78
80 MediumTurquoise 166 DarkOrange3_2 252 Grey82
81 SteelBlue1_2 167 IndianRed_2 253 Grey85
82 Chartreuse2 168 HotPink3_2 254 Grey89
83 SeaGreen2 169 HotPink2 255 Grey93
84 SeaGreen1 170 Orchid
85 SeaGreen1_2 171 MediumOrchid1

Just as with hex colors, a single attribute can be appended to color names. For example, SteelBlue1-1 to
get the bold version of this color.

d. Color variables

Up to 128 custom color variables can be used via the define keyword to make it easier to build and read
theme files. Example:

define FTYPE_DIR=31
define IFACE_ELN=4;38;2;255;255;0;48;2;0;14;191

FiletpeColors="di=FTPYE_DIR:"
InterfaceColors="el=IFACE_ELN:"

These variables can only be used for FiletypeColors, InterfaceColors, ExtColors, and DirIconColor. The
Prompt line (if using a prompt code) uses full SGR sequences or prompt-specific color codes instead.

e. Examples

A few examples to put all this together:

fi=4;31 (regular files are 4-bit underlined red)
di=@33-1 (directories are 8-bit bold light-blue)
ln=#5fd7ff (symbolic links are 24-bit light cyan)
so=Yellow3 (socket files are Yellow3)

More complex combinations can be achieved using complete SGR sequences (for example, to add a back-
ground color). E.g.:

fi=4;38;2;245;76;48;2;0;0;255

will print regular files underlined and using a bold orange color on a blue background. In this case, just
make sure to use a terminal emulator supporting true colors. To test your terminal color capabilities use the
colors.sh script (in the plugins directory).

Note: It may happen that, for some reason, you need to force clifm to use colors despite the value of the
TERM variable. The OpenBSD console, for example, sets TERM to vt220 by default, which, according to
the terminfo database, does not support color. However, the OpenBSD console does actually support color.
In this case, you can set the CLIFM_FORCE_COLOR a specific value even if the value of TERM says

clifm 1.25 Apr 30, 2025 42

CLIFM(1) Clifm Manual CLIFM(1)

otherwise. Supported values are: 8, 16, 256, truecolor (or 24bit).

To see a colored list of the currently used colors run the ‘cs preview‘ command.

To run without colors use the --no-color command line option or set either CLIFM_NO_COLOR or
NO_COLOR environment variables to any value. For more information about the no-color initiative see
https://no-color.org/

For a full no-color experience recall to edit your prompt removing all color codes.

2. THE PROMPT

2.a. Description

Clifm’s prompt is taken from the Prompt line in the color scheme file using a prompt name as defined in
the prompts file, for example, Prompt="security-scanner".

Each prompt is built following almost the same escape codes and rules used by the Bash prompt, except
that it does not accept shell functions (like conditionals and loops). Command substitution (in the form
$(cmd)), prompt modules (in the form ${module}), color codes (in the form %{color}), string literals, and
escape sequences can be used to build the prompt.

Consult the prompts file (using the ‘prompt edit‘ command) for detailed information and examples on how
to build a prompt.

By default, for intstance, clifm’s prompt line is this:

"%{reset}\I[\S%{reset}]\l \A \u:\H %{cyan}\w%{reset}\n<\z%{reset}> %{blue}\$%{reset} "

which once decoded should look something like this:

[1] 13:45 user:hostname /my/path
<0> $

with the workspace number printed in blue, the path in cyan, the last exit status in green (or red in case of
error), and the dollar sign in blue.

A more "classic" prompt can be generated as follows:

"\u@\U \w> "

or, using now command substitution:

"$(whoami)@$(hostname) $(pwd)> "

2.b. Prompt notifications

A bold red ´R´ at the left of the prompt reminds the user that the program is running as root. A bold green
´S´ indicates that there are elements in the Selection Box. In the same way, a cyan ´T´ means that there are
currently files in the trash can, just as a bold blue ´S´ means that the program is running in stealth mode. Fi-
nally, clifm makes use of three kind of messages: errors (a red ´E´ at the left of the prompt), warnings (a
yellow ´W´), and simple notices (a green ´N´).

If Notifications is set to false in the prompts file, the above notifications won´t be printed by the prompt,
but are still available to the user as escape codes (see above) and environment variables (see the ENVI-
RONMENT section below) to build custom prompts.

2.c. The Warning Prompt

The suggestions system includes a secondary, warning prompt, used to highlight wrong/invalid/non-exis-
tent command names. Once an invalid command is entered, the regular prompt will be switched to the
warning prompt.

clifm 1.25 Apr 30, 2025 43

CLIFM(1) Clifm Manual CLIFM(1)

The wrong command name check is omitted if the input string:

Is quoted (e.g.: "string" or ´string´)
Is bracketed (e.g.: (string), [string], or {string})
It starts with a stream redirection character (e.g.: <string or >string)
Is a comment (e.g.: #string)
It starts with one or more spaces
Is an assignment (e.g.: foo=var)
It is escaped (e.g.: \string)

The warning prompt can be customized by means of the same rules used by the regular prompt. To use a
custom warning prompt, modify the WarningPrompt line in the prompts file (via the ‘prompt edit‘ com-
mand). It defaults to

"%{reset}%{b:red}(!)%{n:dim} > "

the last line of the regular prompt will become "(!) > ", with "(!)" printed in bold red.

To disable this feature use the --no-warning-prompt command line switch or set the EnableWarning-
Prompt option to false in the prompts file.

Note: Bear in mind that the warning prompt depends on the suggestions system, so that it will not be avail-
able if this system is disabled.

2.d. The Right Prompt

The right prompt is just like the regular prompt, but printed on the right side of the screen.

Use the RightPrompt option in the prompts file to set a right prompt. For a concrete usage example see the
info prompt in the prompts file.

A few caveats:

a. Right prompts only work with multiline regular prompts (in the case of a single line regular
prompt, the right prompt is not printed).
b. Multiple lines are not supported by right prompts (only the first line will be printed).
c. If the decoded right prompt exceeds the number of available terminal columns, the prompt is
not printed.

3. THE DIVIDING LINE

The line dividing the current list of files and the prompt. It can be customized using the DividingLine op-
tion in the color scheme file to fit your prompt design and/or color scheme.

DividingLine accepts one or more ASCII or Unicode characters (in both cases you only need to type/paste
here the chosen character(s)). If only one character is specified (by default, "-"), it will be repeatedly
printed to fulfill the current line up to the right edge of the screen or terminal window. If you don’t want to
cover the whole line, specify two or more characters, in which case only these characters (and no more)
will be used as dividing line. For example: "------->". To use an empty line, set DividingLineChar to
"0" (that is, as a character, not as a number). Finally, if this value is not set, a special line drawn with
box-drawing characters will be used (box-drawing characters are not supported by all terminal emulators).

The color of this line is set via the dl color code in the color scheme file. Consult the COLOR CODE sec-
tion above for more information.

4. FZF WINDOW

Refer to the TAB COMPLETION section below.

clifm 1.25 Apr 30, 2025 44

CLIFM(1) Clifm Manual CLIFM(1)

8. BUILT-IN EXPANSIONS
1. ELNs

A number representing the Entry List Number (ELN) of a listed file is expanded to its corre-
sponding filename. You can type ‘ELN<TAB>‘ to convert the ELN into the filename. ELN ranges
are also supported. For example, ‘t 1-3 10 24‘ will move the files with ELNs 1 through 3, 10 and
24 to the trash.

Bear in mind that ELNs will only be expanded provided some filename is listed on the screen un-
der the corresponding numbers. For example: ‘diff 1 118‘ will only expand ’1’, but not ’118’, if
there is no ELN 118. In the same way, the range 1-118 will only be expanded provided there are
118 or more filenames listed on the screen. Note that the second field of a range can be omitted, in
which case the ELN of the last listed file is assumed (e.g.: provided there are 100 listed files, 12-
is equivalent to 12-100).

Since ranges can be a bit tricky, tab completion is available to make sure this range actually in-
cludes the desired filenames.

If this feature somehow conflicts with the command you want to run, say, ‘chmod 644 ...‘, because
the current number of files is equal or larger than 644 (in which case clifm will expand that num-
ber), then you can simply run the command as external: ‘;chmod 644 ...‘

2. Selected files

The s: prefix expands to all selected files (as absolute paths). To get the list of selected files type
‘s:<TAB>‘. The sel keyword can be used as well, but, unlike s:, it can only be used after the first
word, i.e., as a command parameter. For example, ‘m sel‘ (or ‘m s:‘) will move all selected files to
the current directory. To trash or remove selected files, simply run ‘t sel‘ or ‘r sel‘ respectively.

3. Bookmarks

The b: prefix expands to all bookmarked files (as absolute paths). Enter ‘b:‘ followed by a book-
mark name to expand to the absolute path referred to by that bookmark. To get the list of available
bookmarks, type ‘b:<TAB>‘. For example, ‘p b:work‘ will print the file properties of the book-
mark named work.

4. Tagged files

The t: prefix is used to access tagged files. Type ‘t:<TAB>‘ to get the list of available tags. Type
‘t:TAG<TAB>‘ to get the list of files tagged as TAG. t:TAG expands to all files tagged as TAG (as
absolute paths). For example, ‘s t:old‘ will select all files tagged as "old".

5. Workspaces

The w: prefix expands to a specific workspace (as absolute path). For example, ‘c sel w:3‘ will
copy all selected files to the third workspace.

6. File types

The = (equal) prefix is used to filter files according to their type. Type ‘=<TAB>‘ to get the list of
available file types in the current directory. Also, type ‘=x<TAB>‘ to get the list of executable files
in the current directory. For example, ‘r =D =F =L‘ will remove all empty directories, empty regu-
lar files, and broken symbolic links in the current directory.

7. MIME types

The @ (at sign) prefix is used to filter files according to their MIME type. Type ‘@<TAB>‘ to get
the list of MIME types available in the current directory. For example, ‘br @image‘ will bulk

clifm 1.25 Apr 30, 2025 45

CLIFM(1) Clifm Manual CLIFM(1)

rename all files in the current directory whose MIME type includes the word "image".

8. Pinned directory

A single comma (,) expands to the currently pinned directory (see the pin command for more in-
formation). For example, the command ‘c =o ,‘ will copy all other-writable files in the current di-
rectory to the pinned directory.

9. Parent directories

Via the fastback function, you can quickly change to any parent directory using a series of dots. A
single dot (.) refers to the current directory, and two dots (..) refer to the parent directory. This pat-
tern continues, so three dots (...) refer to the parent of the parent directory, four dots (....) refer to
the parent of the parent of the parent directory, and so on. In general, n dots refer to the nth level of
parent directories.

Needless to say, combinations are possible. For example, the command ‘c sel b:work @image =L 1-3 ,‘
will copy all selected files, the bookmark named work, all images, broken symbolic links in the current di-
rectory, and files with ELNs 1 through 3 to the pinned directory.

Note: If using the fzf mode for Tab completion (default), you can operate on some files of any of these
groups of files using the TAB key to mark files in the list. For example, you can type ‘CMD sel<TAB>‘ to
get the list of selected files, then use the TAB key to mark the desired files. Press Enter or Right to insert
the marked files into the current command line.

9. TAB COMPLETION
There are four modes for tab completion: standard (interface provided by readline), fzf, which depends on
fzf (https://github.com/junegunn/fzf) (version 0.18.0 or later), fnf (https://github.com/leo-arch/fnf), and
smenu (https://github.com/p-gen/smenu). By default, if the fzf binary is found in $PATH, clifm will at-
tempt to use fzf to display completions. You can force the use of the remaining modes via the --stdtab,
--fnftab, and --smenutab command line switches. The TabCompletionMode option in the configuration
file can be used to permanently set the tab completion mode.

If using the fzf mode, the completions interface can be customized using the FzfTabOptions option in the
color scheme file. --height, --margin, +i/-i, --read0, --query, and --ansi will be appended to set up
some details of the completions interface. Set this value to none to pass no option, to the empty string to
load the default values, or to any other custom value. Unless set to none, any option specified here will
override FZF_DEFAULT_OPTS.

Default values for this option are:
--color=16,prompt:6,fg+:-1,pointer:4,hl:5,hl+:5,gutter:-1,marker:2,border:7:dim --bind tab:ac-
cept,right:accept,left:abort,alt-p:toggle-preview --inline-info --layout=reverse-list --pre-
view-window=wrap,border-left

Consult fzf(1) for more information.

If set neither in FzfTabOptions nor in FZF_DEFAULT_OPTS (in this order), the height of the fzf win-
dow is set to the default value: 40% of the current terminal number of line/rows.

To use fzf global values (defined in FZF_DEFAULT_OPTS), set FzfTabOptions to none.

File previews are available in fzf mode via shotgun. See the SHOTGUN section above.

Image previews are available via the clifmimg plugin. Run ‘help image-previews‘ for more information.

If using the smenu mode, the interface can be customized using the CLIFM_SMENU_OPTIONS envi-
ronment variable. For example:

export CLIFM_SMENU_OPTIONS="-a t:2,b b:4 c:r ct:2,r sf:6,r st:5,r mt:5,b"

clifm 1.25 Apr 30, 2025 46

CLIFM(1) Clifm Manual CLIFM(1)

Consult smenu(1) for more information.

For information about how to customize fnf consult fnf(1).

Clifm can perform fuzzy tab completion (just as suggestions) for filenames and paths (e.g. "dwn" is com-
pleted/suggested as "Downloads"). To enable this feature use the --fuzzy-matching command line switch
or set FuzzyMatching to true in the configuration file.

10. FILE OPENER
As clifm´s builtin file opener, Lira takes care of opening files when no opening application has been speci-
fied in the command line (or when running as a standalone file opener, via the --open command line
switch). It does this by automatically parsing a MIME list file (see the FILES section below): it looks first
for a matching pattern (either a MIME type or a filename), then checks the existence of the command asso-
ciated to this pattern, and finally executes it.

Lira is controlled using the mime command. File associations are stored in the MIME list file and can be
edited using the ‘mime edit‘ command.

When running for the first time, or whenever the MIME list file cannot be found, clifm will copy the MIME
definitions file from the DATADIR directory (usually /usr/share/clifm/mimelist.clifm) to the local configu-
ration directory.

Lira will check the file line by line, and if a matching line is found, and if at least one of the specified ap-
plications exists, this application will be used to open the corresponding associated file. Else, the next line
will be checked. In other words, the precedence order is top to bottom (for lines) and left to right (for appli-
cations).

Note: In case of directories (whose MIME type is inode/directory), the entry will be used only for the
open-with command (ow).

A note about MIME types

File MIME types are determined using libmagic –the same library used by file(1)–, which, though highly
reliable, is not bullet-proof. Sometimes it fails, either because the appropriate MIME type is not in its data-
base, or because the database is just wrong. In either case, you can manually map file extensions to MIME
types using a specific file (by default, ˜/.mime.types).(1)

By way of example, libmagic knows nothing about ILBM image files, and returns application/zip for
OpenRaster images. Create ˜/.mime.types with the following content:

image/x-ilbm iff lbm
image/openraster ora

Restart clifm and these MIME types will be immediately associated to all files having the specified exten-
sions (to test it, run ‘mm info‘ on any of these files).(2)

If required, edit the mimelist and the preview files (‘mm edit‘ and ‘view edit‘, to specify how files are
opened and previewed respectively), and add a new line handling the corresponding MIME types (say, "im-
age/x-ilbm=APP" and "image/openraster=APP"). See below for more information.

(1) To use a different file, set $CLIFM_MIMETYPES_FILE to the desired file, for example,
‘CLIFM_MIMETYPES_FILE=/etc/mime.types clifm‘.

(2) In case of issues, bear in mind that the mime.types file is read top to bottom, and that, in case of
conclicts (mostly duplicate extensions), only the last entry is effective.

Important: Though sometimes convenient, determining file types by means of filename extensions alone is
unreliable: a file, no matter its type, can bear any file extension, without restriction. Because of this, you
might end up executing a command that was not intended due to wrong file identification. Be extra careful
when doing this.

clifm 1.25 Apr 30, 2025 47

CLIFM(1) Clifm Manual CLIFM(1)

1. Syntax

In its most basic form, each line in the MIME list file consists of:

a) A left value: this is just a regular expression indicating what we are trying to match (it can be a filename,
a file extension, or a MIME type).

b) A right value: a semicolon separated list of commands to be used as the opening application (the first ex-
isting program found in this list will be used).

For example:

ˆtext/.*=leafpad

which is to be read as follows: Open text files (in this case we are partially matching a MIME type) using
leafpad.

As explained below, this basic rule can be modified to get much more control on what we are matching and
how we execute the opening application.

The syntax is this:

[!][X:][N:]REGEX=CMD [ARGS] [%[f,x]] [![E,O]] [&]; ...

Note that this syntax departs from the Freedesktop specification in that we do not rely on desktop files
(mostly used by desktop environments), but rather on commands and parameters.

2. The left value (REGEX)

2.1. The X prefix

Without any prefixes, the rule will attempt to match MIME types, disregarding if we are running on a
graphical or non-graphical environment. For example,

ˆtext/.*=leafpad

instructs lira to open all text files using leafpad, no matter if we are running on a graphical or non-graphi-
cal environment.

However, we usually do not want to use leafpad if we are not running on a graphical environment. In this
case, we can write a double rule as follows:

X:ˆtext/.*=leafpad
!X:ˆtext/.*=nano

where the first rule (via the X prefix) is intended for use on graphical environments, where we can use leaf-
pad, and the second one (via the !X prefix) for non-graphical environments, where we rather prefer to use
nano.

2.2. The N prefix

Sometimes MIME types are not enough to identify a file, or we just want to match a specific filename. In
this case, we can use the N prefix to tell Lira that we want to match a filename instead of a MIME type. For
example:

X:N:ˆfilename.txt$=leafpad

in which case we want to match exactly the filename filename.txt (no matter its MIME type).

If we want to match file extensions, instead of entire filenames, we can use a regular expression, as follows:

X:N:.*.txt$=leafpad

Here, we are not matching a specific filename, but a specific file extension, so that the rule reads as follows:
open all files ending with .txt using leafpad.

clifm 1.25 Apr 30, 2025 48

CLIFM(1) Clifm Manual CLIFM(1)

3. The right value (CMD)

The right value is a semicolon separated list of commands, each of which contains a command, and option-
ally, command arguments and modifiers. For example:

X:N:.*.txt$=leafpad --sync,geany,mousepad,nano

which means: Open .txt files (graphical environments only) using ‘leafpad --sync‘, or, if not found, geany‘,
mousepad, or nano, in this order. The file to be opened will be appended to the command string, say ‘leaf-
pad --sync FILE‘.

3.1. The %f placeholder

Use the %f placeholder to specify the position of the file to be opened in the command, for example:

mpv %f --terminal=no

will be translated into: ‘mpv FILE --terminal=no‘

If the placeholder is not specified, the file to be opened will be appended to the command string. Thus, this:
‘mpv --terminal=no‘ amounts to this: ‘mpv --terminal=no FILE‘.

3.2. STDERR and STDOUT

Sometimes we might need to silence either standard error (STDERR), standard output (STDOUT), or both.
Use !E and !O to silence them respectively. Both can be used together: !EO. Example: ‘leafpad %f !EO‘,
or, to silence only STDERR: ‘leafpad %f !E‘.

3.3. Run in the background

The ampersand character (&) can be used, as usual, to run the opening application in the background. Ex-
ample: ‘leafpad %f &‘.

3.4. The %x flag

The %x flag is a shortcut for "%f !EO &": the command will be executed in the background and both
STDOUT and STDERR will be silenced. As a plus, the command is executed in a new session, i.e. de-
tached from the running terminal (via setsid(3). This flag is recommended to open files via graphical appli-
cations. Examples:

For GUI applications:

APP %x

For terminal applications:

TERM -e APP %x

Replace TERM and APP by the appropriate values (say, xterm and vi respectively). The -e option might
vary depending on the terminal emulator used.

Note: In case of archives, the builtin ad command can be used as opening application.

3.5. Environment variables

Environment variables (e.g. $EDITOR, $VISUAL, $BROWSER, and even $PAGER) are also recognized
by Lira. You can even set custom environment variables to be used exclusively by clifm. For example, you
can set CLIFM_TERM, CLIFM_EDITOR, and CLIFM_PDF, and then use them to define some associ-
ations:

X:text/plain=$CLIFM_TERM -e $CLIFM_EDITOR %f &
X:N:.*\.pdf$=$CLIFM_PDF %f &

3.6. Using shell scripts
Bear in mind that commands will be executed directly without shell intervention, so that no shell
goodies (like pipes, conditions, loops, etc) are available. In case you need something more

clifm 1.25 Apr 30, 2025 49

CLIFM(1) Clifm Manual CLIFM(1)

complex than a single command (including shell capabilities) write your own script and place the
path to the script in place of the command. For example:

X:ˆtext/.*:˜/scripts/my_cool_script.sh

4. Examples:

Match a complete filename:

X:N:some_filename=nano;vim;vi;emacs

Note: If the filename contains a dot, quote it like this: some_filename\.ext (to prevent the REGEX parser
from interpreting the dot).

Open video files with mpv in the foreground and silence STDERR:

ˆvideo/.*=mpv %f !E

Open video files with gmplayer in the background and silence both STDERR and STDOUT:

ˆvideo/.*=gmplayer %f !EO & (or ’gmplayer %x’)

Match multiple filenames (starting with "str"):

X:N:ˆstr.*=leafpad %x;mousepad %x;kate %x;gedit %x

Match a single extension:

X:N:.*\.txt$=leafpad %x;mousepad %x;kate %x;gedit %x
!X:N:.*\.ˆtxt$=nano;vim;vi;emacs

Match multiple extensions:

X:N:.*\.(sh|c|py|pl)$:geany %x;leafpad %x;nano

Match a single mimetype:

!X:ˆaudio/mp3$=mpv %f --terminal=no;ffplay -nodisp -autoexit;mpv;mplayer

Match multiple mimetypes:

X:ˆaudio/.*=mplayer;mplayer2;vlc %x;gmplayer %x;smplayer %x;totem %x

In case of MIME types, you can also write the entire expression without relying on any regular expression.
For example:

!X:text/plain=$TERM -e $EDITOR %x

For more information take a look at the mimelist file itself (F6 or ‘mm edit‘).

5. Using a third-party opener

This can be done in two ways:

a. Set Opener in the configuration file to the name of the desired opener. For example, to use Ranger’s ri-
fle(1):

Opener=rifle

or, if you prefer xdg-open(1):

Opener=xdg-open

clifm 1.25 Apr 30, 2025 50

CLIFM(1) Clifm Manual CLIFM(1)

b. Tell Lira to open all files, no matter the MIME type or filename, via the desired opener. For example:

.*=rifle

6. Using Clifm as a standalone file opener

Though clifm is a file manager, it can be used as a simple file opener via the --open command line option.
For example:

clifm --open /path/to/my_file.jpg
clifm --open /path/to/my_dir
clifm --open https://some_domain

Note: When opening web resources clifm will query the mimelist file using text/html as MIME type. What-
ever association it finds for this specific MIME type will be used to open the web resource.

11. SHOTGUN
1. Tab completion with file previews

Shotgun is clifm´s builtin files previewer. Though, as described below, it may be used as a standalone and
general purpose file previewer (similar in this regard to pistol(1)), it is mainly intended to be used by
clifm’s tab completion function running in fzf mode: every time tab completion is invoked for files, shot-
gun will be executed with the currently highlighted file as argument (as shown below) to generate the pre-
view. Set the FzfPreview option in the configuration file to false (or run with --no-fzfpreview) to disable
this feature.

Shotgun is also used by the view command to display file previews in full screen.

2. Running as a standalone files previewer

Executed via the --preview command line switch, shotgun performs file preview for any file passed as ar-
gument. For example:

clifm --preview myfile.txt

This command generates a preview of the file myfile.txt and then quits clifm.

3. Customization

Previewing applications (based on either MIME type or filename) are defined in a configuration file
($XDG_CONFIG_HOME/clifm/profiles/PROFILE/preview.clifm) using the same syntax used by Lira (the
builtin file opener). See the FILE OPENER section above.

You can set an alternative configuration file using the --shotgun-file command line switch:

clifm --shotgun-file=/path/to/shotgun/config/file --preview=myfile.txt

To customize the appearance of the preview window, use the --preview-window option in the FzfTabOp-
tions line in the current color scheme file. For example, if you want the preview window down the file list
(instead of to the right):

--preview-window=down

Default keybindings for the preview window:

Alt+p: Toggle the preview window
Ctrl+Up / Shift+Up: Scroll the preview window up one line
Ctrl+Down / Shift+Down: Scroll the preview window down one line
Alt+Up: Scroll the preview window up one page
Alt+Down: Scroll the preview window down one page

clifm 1.25 Apr 30, 2025 51

CLIFM(1) Clifm Manual CLIFM(1)

Keybindings can be customized using the --bind option in the FzfTabOptions field in the color scheme
file.

Consult fzf(1) for more information.

4. Image previews

Image previews are available via the clifmimg plugin. Run ‘help image-previews‘ or consult the Wiki for
more information: https://github.com/leo-arch/clifm/tree/master/misc/tools/imgprev.

12. AUTO-SUGGESTIONS
Gemini is a builtin suggestions system (similar to that provided by the Fish shell). As you type, Gemini
will suggest possible completions right after the current cursor position.

The following checks are available (the order can be customized, see below):

a. ELNs

b. clifm commands and parameters

c. Entries in the command history list (already used commands)

d. Filenames in the current working directory and paths (1)

e. Entries in the jump database

f. Aliases names

g. Bookmarks names

h. Program names in PATH

i. Shell builtins (2)

(1) Fuzzy suggestions are supported. For example: dwn > Downloads. Enable this feature using the
--fuzzy-marching command line switch or setting FuzzyMatching to true in the configuration file.

(2) The shell name is taken from /bin/sh. The following shells are supported: bash, dash, fish, ksh, tcsh, and
zsh. Command names are checked in the following order: clifm internal commands, commands in PATH,
and shell builtins.

Note: By default, a brief description for internal commands is suggested. You can disable this feature via
the SuggestCmdDesc option in the configuration file.

To accept the entire suggestion press Right or Ctrl+f: the cursor will move to the end of the suggested com-
mand and the suggestion color will change to that of the typed text; next, you can press Enter to execute
the command as usual. Otherwise, if the suggestion is not accepted, it will be simply ignored and you can
continue editing the current command line however you want.

To accept the first suggested word only (up to first slash or space), press rather Alt+Right or Alt+f. Not
available for ELNs, aliases and bookmarks names.

Bear in mind that suggestions for ELNs, aliases, bookmarks names, the jump function (invoked by the j
command), just as filenames and paths (if fuzzy-suggestions are enabled) do not work as the remaining
suggestions: they do not suggest possible completions for the current input, but rather the value pointed to
by it. For example, if you type "12" and the current list of files includes a filename whose ELN is ’12’, the

clifm 1.25 Apr 30, 2025 52

CLIFM(1) Clifm Manual CLIFM(1)

filename corresponding to this ELN will be printed next to "12" as follows: 12_ > filename (where the un-
derscore is the current cursor position). Press Right or Ctrl+f to accept the suggestion, in which case the
text typed so far will be replaced by the suggestion.

The order of the suggestion checks can be customized using the SuggestionStrategy option in the configu-
ration file. Each check is assigned a lowercase character:

a = Aliases names
c = Possible completions
e = ELNs
f = Files in the current directory
h = Entries in the commands history
j = Entries in the jump database

The value taken by SuggestionStrategy is a string containing one or more of the above characters. The
characters order in this string specifies the order in which the suggestion checks will be performed. For ex-
ample, to perform all checks in the same order above, the value of the string should be acefhj (without
quotes). Or, if you prefer to run the history check first: hacefj. Finally, you can ignore one or more checks
by just omitting the corresponding character (to skip all checks, set the option value to a single dash (-)).
So, to ignore the aliases and the ELN checks, set SuggestionStrategy to hcfj. The default value for this op-
tion is ehfjac.

Note: The check for program names in PATH is always executed at last, except when the ExternalCom-
mands option is disabled, in which case suggestions for them are simply not displayed.

Suggestions will be printed using one of the following color codes (see the COLOR CODES section
above):

sf: Used for file and directory names. This includes suggestions for ELNs, bookmarks names, files in the
current directory, and possible completions. Default value: 2;4;36 (dimmed underlined cyan)

sh: Used for entries in the commands history.

sc: Used for aliases and program names in PATH.

sx: Used for clifm internal commands and parameters.

sp: Greater-than sign (>) used when suggesting ELNs, bookmarks, and aliases names.

You can set SuggestFiletypeColor to true in the configuration file to use the color of the file type of the
current filename (as set in the color scheme file) instead of the value of sf. For example, if a suggestion is
printed for a file that is a symbolic link, ln or or (if it’s a broken link) will be used instead of sf.

13. SHELL FUNCTIONS
Clifm includes a few shell functions to perform specific actions (cd-on-quit, and subshell-notice). Take a
look at the corresponding files, in /usr/share/clifm/functions, and follow the instructions. Needles to say,
you can write your own functions.

14. PLUGINS
Plugins are just scripts or programs (written in any language) intended to add, extend or improve clifm´s
functionalities. They are linked to actions names defined in a dedicated configuration file ($XDG_CON-
FIG_HOME/clifm/profiles/PROFILE/actions.clifm).

Note: In stealth mode, since access to configuration files is not allowed, plugins are disabled.

clifm 1.25 Apr 30, 2025 53

CLIFM(1) Clifm Manual CLIFM(1)

To list available actions and the plugins they are linked to, run ‘actions‘.

To execute a given plugin, enter the corresponding action name (plus parameters if required).

To get information about a specific plugin, enter the action name followed by ‘--help‘.

Though several plugins are provided at installation time (in the plugins directory), you can write your owns
as you like, with any language you like, and for whatever purpose you want. Writing plugins is generally
quite easy; but your mileage may vary depending on what you are trying to achieve. A good place to start is
examining the provided plugins and reading the actions command description, just as the ENVIRON-
MENT and FILES sections below.

A convenient helper script is provided to get a consistent look across all plugins, specially those running
fzf. This helper script is located in DATADIR/clifm/plugins/plugins-helper, but it will be overridden by
$XDG_CONFIG_HOME/clifm/plugins/plugins-helper if found. The location of this file is set by clifm it-
self in the CLIFM_PLUGINS_HELPER environment variable to be used by plugins. Source the file and
use any of the functions and variables provided by it to write a new fzf plugin:

Source our plugins helper
if [-z "$CLIFM_PLUGINS_HELPER"] || ! [-f "$CLIFM_PLUGINS_HELPER"]; then

printf "clifm: Unable to find plugins-helper file\n" >&2
exit 1

fi
shellcheck source=/dev/null
. "$CLIFM_PLUGINS_HELPER"

Plugins can talk to clifm via a dedicated pipe created for this purpose and exposed via an environment vari-
able (CLIFM_BUS). Write to the pipe and clifm will hear and handle the message immediately after the
plugin’s execution. If the message is a path, clifm will run the open function, changing the current directory
to the new path, if a directory, or opening it with the default associated application if a file. Otherwise, if the
message is not a path, it will be taken and executed as a command. Examples:

´echo "/tmp" > "$CLIFM_BUS"´ tells clifm to change the current directory to /tmp

´echo "s *.png" > "$CLIFM_BUS"´ makes clifm select all files in the current directory ending with
".png"

The pipe (CLIFM_BUS) is deleted immediately after the execution of its content and recreated before run-
ning any other plugin.

This is a list of available plugins:

clifm 1.25 Apr 30, 2025 54

CLIFM(1) Clifm Manual CLIFM(1)

Action name Description Dependencies
Create files in batch -bn

Copy files in batch -bcp

Import bookmarks -bmi

Interact with the system clipboard (1)clip

Test terminal´s colors capability (2)unset

Copy files to a remote location fzf, and scp, ffsend, or croccr

Disk usage analyzer du, fzfda

Drag and drop files dragon or dragon-drag-and-dropdr

Find/remove file dups (3)fdups

Find files in the current directory fzf or rofi+

Quickly change directory fzf_ (underscore)

Browse the commands history fzfh

Navigate/select/preview files See section below- (yes, just a dash)

Select files (includes flat view) fzf, find*

Deselect files fzf**

Show git repo status git (4)unset

Browse clifm’s manpage fzfih

Image thumbnails previewer sxiv, feh or lsixi

Jump to a directory in the jump database fzf or rofi++

Decrypt a GnuPG encrypted file gpg, tar, sed, grepkd

Encrypt files/dirs using GnuPG gpg, tar, sed, fzf, awk, xargske

List files by a given MIME type fzf, fileml

Create a music playlist mplayermusic

Pipe files in CWD through a pager less, columngg

Preview PDF files as text pdftotextptot

Recursively remove files find, fzfrrm

Search files by content fzf, ripgrep//

Update plugins (5)unset

Preview video files thumbnails ffmpegthumbnailervid

Virtual directory for sets of files sedvt

Set image as wallpaper (6)wall

Pick/select files via clifm (7)unset

Copy the line buffer to the clipboard (8)Ctrl+y

(1) xclip or xsel (Xorg), wl-copy/wl-paste (Wayland), clipboard (Haiku), clip (Cygwin), pbcopy/pbget
(MacOS), termux-clipboard-get/termux-clipboard-set (Termux), cb (cross-platform:
https://github.com/Slackadays/Clipboard)

(2) colors.sh (by default unset)

(3) find, md5sum, sort, uniq, xargs, sed, stat

(4) The git_status.sh plugin is not intended to be used as a normal plugin, that is, executed via an action
name, but rather to be executed as a prompt command (it will be executed immediately before each
prompt). Add this line to the main configuration file:

promptcmd /usr/share/clifm/plugins/git_status.sh

clifm 1.25 Apr 30, 2025 55

CLIFM(1) Clifm Manual CLIFM(1)

Whereas this plugin provides basic Git integration, it could be easily modified (it is just a few lines long) to
include whatever git function you might need.

(5) update.sh (by default unset)

(6) feh, xloadimage, hsetroot, or nitrogen (for X); swww or swaybg (for Wayland)

(7) file_picker.sh (by default unset). Usage example: ‘ls -ld $(file_picker.sh)‘

(8) Dependencies: cb, wl-copy, xclip, xsel, pbcopy, termux-clipboard-set, clipboard, or clip. Consult the
plugin file itself (xclip.sh) for more information

Dependencies of the previewer plugin (fzfnav.sh)

archives: atool, bsdtar, or tar
images: kitty terminal, imagemagick, and ueberzug or viu or catimg or img2txt or pixterm
fonts: fontpreview or fontforge
docs: libreoffice, catdoc, odt2txt, pandoc
PDF: pdftoppm, pdftotext or mutool
epub: epub-thumbnailer
DjVu: djvulibre or djvutxt
postscript: ghostscript
videos: ffmpegthumbnailer
audio: ffmpeg, mplayer, or mpv
web: w3m, links, elinks, or pandoc
markdown: glow
highlight: bat, highlight, or pygmentize
torrent: transmission-cli
json: python or pq
file info: exiftool, mediainfo, or file

To run the pager.sh plugin, for example, you only need to enter the corresponding action name, in this case
gg. In case of need, all plugins provide a -h,--help switch for a brief usage description.

Note: The fzfnav plugin uses fzf(1) to navigate the filesystem and BFG (a script located in the plugins di-
rectory) to show previews (to display image previews BFG requires ueberzug(1) or the Kitty protocol via
the Kitty terminal). A configuration file (BFG.cfg, in the plugins directory itself) is provided to customize
the previewer’s behavior.

Note 2: An alternative files previewing function (builtin, and thereby faster than BFG) is provided by shot-
gun. See the SHOTGUN section above for more information.

In addition to the builtin BFG previewer, fzfnav supports the use of both Ranger´s scope.sh script and pis-
tol(1). To use scope, edit the BFG configuration file and set USE_SCOPE to 1 and SCOPE_FILE to the
correct path to the scope.sh file (normally $HOME/.config/ranger/scope.sh). To use pistol instead, set
USE_PISTOL to 1.

Take a look at the Wiki for more information: https://github.com/clifm/wiki/Advanced#plugins

15. AUTOCOMMANDS
Heavily inspired by Vifm, the autocommands function allows the user a fine-grained control over clifm
settings. It is mostly devised as a way to improve performance for remote filesystems (usually slower than
local ones) by allowing you to turn off some features (like the file counter) that might greatly affect perfor-
mance under some circumstances (like remote connections). However, the autocommands function is not
restricted to this specific use case: use it for whatever purpose you find useful.

clifm 1.25 Apr 30, 2025 56

CLIFM(1) Clifm Manual CLIFM(1)

Note: We describe here permanent autocommands, which need to be defined in the configuration file.
Temporary autocommands (set via the command line and valid only for the current directory and the cur-
rent session) are also available via the auto command. See above.

Add a line preceded by the autocmd keyword to the main configuration file. The general syntax is:
autocmd TARGET cmd,cmd,cmd

TARGET specifies the object to which subsequent commands will apply. It can match either directory
names (paths) or workspaces.

1. To match directory names use a glob pattern (as specified by glob(7)). If no glob metacharacter is pro-
vided, the string will be compared as is to the current working directory. To invert the meaning of a pattern,
prepend an exclamation mark. To match all directories under a specific directory (including this directory
itself) use the double asterisk (**). A few examples:

˜/Downloads Match exactly the Downloads directory (and only this directory) in your home directory
˜/Downloads/* Recursively match all subdirectories in ˜/Downloads (excluding the Downloads directory
itself)
/˜/Downloads/** Recursively match all subdirectories in ˜/Downloads (including the Downloads direc-
tory itself)
˜/Downloads/*.d Match all subdirectories in ˜/Downloads ending with ".d" (excluding the Downloads di-
rectory itself)
!˜/Downloads Match everything except the ˜/Downloads directory

2. You can match workspaces using the ampersand character (@) followed by the ws keyword and then the
workspace number. For example, to match the third workspace: @ws3, or, to match the first workspace,
@ws1. To match instead all workspaces except the second one: !@ws2.

TARGET is followed by a comma separated list of commands:

!CMD: The exclamation mark allows you to run shell commands, custom binaries or scripts

The following codes are used to control clifm’s file list:

Code Description Example
cs Color scheme cs=zenburn
fc File counter fc=0
ft Files filter ft=.*\.pdf$
fz Recursive dir sizes fz=1
hf,hh Hidden files hf=0
lm Light mode lm=1
lv,ll Long view lv=0
mf Max files mf=100 (1)
mn Max filename length mn=20 (1)
od Only directories od=1
pg Pager pg=0
st Sort method st=5
sr Reverse sort sr=1

To remove a value, set the option to an empty value. For example, to remove the files filter and the color
scheme: ft=,cs=

(1) This option supports the unset keyword to remove the corresponding limit. E.g.: mf=unset,mn=unset

clifm 1.25 Apr 30, 2025 57

CLIFM(1) Clifm Manual CLIFM(1)

Examples

1. Run in light mode and disable the file counter for the remotes directory:(1)
autocmd /media/remotes/** lm=1,fc=0

2. Just a friendly reminder:
autcomd ˜/important !printf "Important: keep your fingers outta here!\n" && read -n1

3. This directory has thousands of files. Show only the first hundred and enable the pager:
autocmd /usr/bin mf=100,pg=1

4. Lots of media files (with large filenames). Truncate filenames to 20 chars max and run the files pre-
viewer:(2)

autocmd ˜/Downloads mn=20,!˜/.config/clifm/plugins/fzfnav.sh

5. I want the second workspace, no matter what the current directory is, to list files in long view:
autocmd @ws2 lv=1

6. Mmm, just because I can. Be creative!
autocmd /home/user hf=0,cs=nord,lv=1
autocmd / lv=1,fc=0,cs=solarized,st=5

(1) This is the recommended configuration for remote filesystems.

(2) As seen here, plugins can be used as well: in this case, we want to run fzfnav (to make use of the files
preview capability) whenever we enter the Downloads directory, usually containing videos, music, and im-
ages. NOTE: If you decide to use a plugin, bear in mind that it will not be able to communicate with clifm,
because the autocommand function always executes commands as external applications using the system
shell.

Bear in mind that autocmd directives are evaluated from top to bottom, so that subsequent matching entries
will overwrite options set by previous entries.

Autocommand notifications

By default, a gray ’A’ is printed to the left of the prompt whenever an autocommand is active for the current
directory.

The behavior of this indicator can be customized via the InformAutocmd option in the configuration file.

The color code used to colorize this indicator is ac (see the COLORS section above).

Autocommand files: .cfm.in and .cfm.out

To use this feature, you must first set ReadAutocmdFiles to true in the main configuration file. However,
bear in mind that autocommand files will never be read if running on an untrusted environment (i.e. if run-
ning with --secure-cmds, --secure-env, or --secure-env-full).

Two files are specifically checked by the autocommands function: .cfm.in and .cfm.out (they must be non-
empty regular files of at most PATH_MAX (usually 4096) bytes, and no NUL byte must be contained in
them).

The content of these files is a single instruction, either a shell command or, if you need more elaborated
stuff, a script (or custom binary). Note that codes to modify clifm’s settings (as described above) are not

clifm 1.25 Apr 30, 2025 58

CLIFM(1) Clifm Manual CLIFM(1)

available here.

If a directory contains a file named .cfm.in, clifm will execute (via the system shell) its content when enter-
ing this directory (before listing files). If the file is named rather .cfm.out, its content will be executed im-
mediately after leaving this directory (and before listing the new directory’s content).

For example, if you want a simple notification whenever you enter or leave your home directory, create
both .cfm.in and .cfm.out files in the home directory with the following content:

For .cfm.in:
printf "Entering %s ..." "$PWD" && read -n1 && clear

For .cfm.out:
printf "Leaving %s ..." "$OLDPWD" && read -n1

16. FILE TAGS
Etiqueta is clifm’s builtin files tagging system

1. How does Etiqueta work?

File tags are created via symlinks using a specific directory under the user’s profile: ${XDG_CON-
FIG_DIR:-/home/USER/.config}/clifm/profiles/USER/tags

Every time a new tag is created, a new directory named as the tag itself is created in the tags directory.
Tagged files are just symbolic links to the actual files created in the appropriate directory. For example, if
you tag ˜/myfile.txt as work, a symbolic link to ˜/myfile.txt, named myfile.txt will be created in tags/work.

2. Handling file tags

tag is the main Etiqueta command and is used to handle file tags. Its syntax is as follows:

tag [add, del, list, list-full, new, merge, rename, untag] [FILE]... [[:]TAG]

Note: The :TAG notation is used for commands taking both file and tag names: ‘tag add FILES(s) :TAG
...‘, to tag files, and ‘tag untag :TAG file1 file2‘, to untag files. Otherwise, TAG is used (without the lead-
ing colon). For example: ‘tag new docs‘, to create a new tag named docs, or ‘tag del png‘, to delete the tag
named png.

Both short and long command format can be used:

Short format Long format Description
tag add Tag filesta

tag del Delete tag(s)td

tag list List tags or tagged filestl

tag rename Rename tagstm

tag new Create new tag(s)tn

tag untag Untag file(s)tu

tag merge Merge two tagsty

3. Usage examples

clifm 1.25 Apr 30, 2025 59

CLIFM(1) Clifm Manual CLIFM(1)

Short format Long format Description
tag list List available tagstl

tag list-full List available tags and all tagged files-

tag list work List all files tagged as worktl work

tag list file.txt List tags applied to the file file.txttl file.txt

tag new dogs cats Create two empty tags: dogs and catstn dogs cats

tag add *.png :images :png Tag PNG files as both images and png (1) (2)ta *.png :images :png

tag add sel :special Tag all selected files as specialta sel :special

tag rename documents docs Rename the tag documents as docstr documents docs

tag merge png images Merge the tag png into images (3)ty png images

tag del images Remove the tag images (4)td images

tag untag :work file1 dir2 Untag a few files from work (5)tu :work file1 dir2

(1) Tags are created if they do not exist
(2) Since add is the default action, it can be omitted: ‘tag *.png :images :png‘.
(3) All files tagged as png will be now tagged as images, and the png tag will be removed.
(4) Untag all files tagged as images and remove the tag itself
(5) Tab completion is available to complete tagged files. If using the fzf mode, multiple files can be selected
using the the TAB key.

4. Operating on tagged files

The t:TAG expression is used to operate on tagged files via any command, be it internal or external. A few
examples:

Command Description
Print properties of files tagged as docsp t:docs

Remove all files tagged as imagesr t:images

Run stat(1) over all files tagged as docs and all files tagged as workstat t:docs t:work

4.1 Operating on specific tagged files

Note: This feature, as always when multi-selection is involved, is only available when tab completion
mode is set to fzf. See the TAB COMPLETION section above.

You may not want to operate on all files tagged as some specific tag, say work, but rather on some files
tagged as work. Tab completion is used to achieve this aim.

Let’s suppose you have a tag named work which contains ten tagged files, but you need to operate (say,
print the file properties) only on two of them, say, work1.odt and work2.odt:

p t:work<TAB>

The list of files tagged as work will be displayed via fzf. Now mark the two files you need using the TAB
key, press Enter or Right, and the absolute path to both files will be inserted into the command line. So, ‘p
t:work‘ will be replaced by ‘p /path/to/work1.odt /path/to/work2.odt‘.

clifm 1.25 Apr 30, 2025 60

CLIFM(1) Clifm Manual CLIFM(1)

17. VIRTUAL DIRECTORIES
Clifm is able to read and list files from the standard input stream (STDIN). Each file in the list should be an
absolute path, terminated with a new line character (\n) and stripped from extra characters not belonging to
the path itself. The size of the input stream buffer is 262MiB (65536 paths, provided each path takes
PATH_MAX bytes (usually 4096)).

Each file passed via standard input is stored as a symbolic link pointing to the original file in a temporary
directory (called here virtual directory) with read-only (0500) permissions. This directory, and all its con-
tents, will be deleted at program exit. Use the --virtual-dir command line flag to specify a custom direc-
tory (it if does not exist, it will be created) instead of the default one, created in the system temporary direc-
tory (usually /tmp/clifm/USER/vdir.XXXXXX, where XXXXXX is a random six digits string).

The user can operate on these files as if they were any other regular file, since all operations performed on
these symbolic links (provided the current working directory is the virtual directory where all these files
are stored) are performed on the target files and NOT on the symbolic links themselves.

Once in the virtual directory, files are listed by default using only the base name of the target file. For exam-
ple, if the target file is /home/user/Downloads/myfile.tar.gz, this file will be listed as myfile.tar.gz. If this file
already exists in the virtual directory (because there is another target file with the same base name, say,
/home/user/Documents/tars/myfile.tar.gz), a random six digits suffix will be appended to the file (for in-
stance, myfile.tar.gz.12Rgj6).

Since this listing mode does not allow the user to get a clear idea of the actual location of each listed file, a
keybinding (by default Alt+w) is available to toggle short (base names only) and long filenames: in this lat-
ter case, filenames are listed using the absolute path to the target file, replacing slashes by colons (:). For
example, if the target file is /home/user/Downloads/myfile.tar.gz, it will be listed in the virtual directory as
home:user:Downloads:myfile.tar.gz.

If you prefer the long names approach, you can use the --virtual-dir-full-paths command line flag.

Note: Bear in mind that the restore last path function is disabled when listing in this way.

Clifm provides to ways of using virtual directories:

1. Reading files from the standard input

2. Listing sets of files via the virtualize.sh plugin (which is in fact a special use case of point 1)

1. Standard input

Examples:

ls -Ad /var/* | clifm

This command will pass all files in the directory /var to clifm

If you need to perform more specific queries, you can use find(1) as follows:

find -maxdepth 1 -size +500k -print0 | tr ´\0´ ´\n´ | sed ´s/.//g´ | clifm

The above command will pass all files in the current directory bigger than 500KiB to clifm.

You can also use stream redirection:

clifm 1.25 Apr 30, 2025 61

CLIFM(1) Clifm Manual CLIFM(1)

ls -Ad $PWD/* > list.txt
clifm < list.txt

2. The virtualization plugin

The virtualize.sh plugin, bound by default to the vt action name, is intended to provide an easy way of list-
ing sets or collections of files, such as selected, tagged, or bookmarked files. For example, to send all se-
lected files to a virtual directory, you can issue this command:

vt sel

and, if you want rather files tagged as PDF:

vt t:PDF

Of course, individual files can also be used:

vt file1 file2 file3

Once executed, the vt plugin will launch a new instance of clifm (on a new terminal emulator window)
where you can operate on the specified files as if they were just normal files. Once done, quit this new in-
stance (via the q command) to return to the primary instance of clifm.

Note: By default, the terminal emulator used is xterm(1), but it can be changed by editing the plugin script
(virtualize.sh).

When navigating the filesystem, you can quickly go back to the virtual directory using the -d option: ‘vt
-d‘. The navigation keys (see the KEYBOARD SHORTCUTS section above) and the CLIFM_VIR-
TUAL_DIR environment variable are also available (Shift+Left/Shift+Right or ‘cd $CLIFM_VIR-
TUAL_DIR‘).

Tip: Write an alias to make this even easier:

alias vtd=´cd $CLIFM_VIRTUAL_DIR´

18. NOTE ON SPEED
Clifm is by itself quite fast by default, but if speed is still an issue, it is possible to get some extra perfor-
mance.

The two most time consuming features are:

1) The file counter, used to print the number of files contained by listed directories. Disabling this option
produces a nice performance boost.

2) In normal mode, fstatat(3) is used to gather information about listed files. Since this function, especially
when executed hundreds (and even thousands) of times, is quite time consuming, the light mode was im-
plemented as an alternative listing process omitting all calls to this function (this does not apply, however,
to the long view: since we need to display files information, fstatat(3) is required).

When running in light mode, however, a few features are lost:

1. Only basic file classification is performed, namely, that provided by the d_type field of a dirent struct
(see readdir(3)). Bear in mind, nonetheless, that whenever _DIRENT_HAVE_D_TYPE was not set at
compile time, or in case of a DT_UNKNOWN value for a given entry (we may be facing a filesystem not

clifm 1.25 Apr 30, 2025 62

CLIFM(1) Clifm Manual CLIFM(1)

returning the d_type value, for example, loop devices), clifm will fall back to stat(3) to get basic files clas-
sification.

2. Color per file extension is disabled for performance reasons.

3. The marker for selected files (*) is lost as well: to keep track of selected files and thus recognize them in
the current list of files, we make use of files device and inode number, which is provided by fstatat(3).

Besides these two features, a few more things can be disabled to get some extra speed (though perhaps un-
noticeable): icons (if enabled), columns, colors, and, if already running without colors, file type indicators.
Because listing lots of files could be expensive and time consuming, you can also try to limit the number of
files printed for each visited directory (see the mf command above).

Despite the above, however, it is important to bear in mind that listing speed does not only depend on the
program´s code and enabled features, but also on the terminal emulator used. Old, basic terminal emulators
like Xterm, Aterm, and the kernel builtin console are really slow compared to more modern ones like
Urxvt, Lxterminal, ST, and Terminator, to name just a few.

If using Xterm, a nice speed boost is provided by the fast scroll option: set fastScroll to true in your ˜/.Xre-
sources file. See xterm(1).

19. KANGAROO FRECENCY ALGORITHM
The directory jumper function is designed to learn the navigation habits of the user. The information is
stored in a database (see the FILES section below) used to get the best match for a given string provided by
the user. In this sense, Kangaroo is like a quick, smart, and evolved cd function.

The information stored in the database, always per directory, is:
a) Permanent entry (’+’): this directory will not be removed from the database, no matter its rank
b) Number of visits
c) Date of first visit (seconds since the Unix epoch)
d) Date of the last visit (seconds since Unix epoch)
e) The absolute path to each visited directory

With this information it is possible to build a ranking of directories to offer the user the most accurate
matches for each query string. The matching algorithm takes into account mainly two factors: frequency
and recency (which is why this kind of algorithm is often called a frecency algorithm).

After getting an initial list of matches based on the query string(s) entered by the user, the frequency algo-
rithm is applied on each entry in the list. The algorithm is quite simple: (visits * VISIT-CREDIT) /
days-since-first-visit. As a result, we get the average of visits per day since the day of the first visit (what
we call the directory rank).

Note: VISIT-CREDIT is a hardcoded value: 200.

There are however some further steps in the ranking process: Bonus points.

Extra credits or penalties are assigned based on the directories last access time according to the following
simple algorithms:
Within last hour: rank * 4
Within last day: rank * 2
Within last week: rank / 2
More than a week: rank / 4

If the last query string matches the basename of a directory, the entry for this directory has 300 extra

clifm 1.25 Apr 30, 2025 63

CLIFM(1) Clifm Manual CLIFM(1)

credits. This is done simply because users normally use directory basenames as query strings: they are eas-
ier to remember.

In the same way, pinned directories get 1000 extra credits, bookmarked directories 500 credits, directo-
ries active in a workspace 300 credits, and directories marked as permanent 300 credits.

For example: if the query string is "test", /media/data/test will be matched. Now, if this directory was ac-
cessed within the last hour, and its rank was 200, it becomes 800. But, because the search string matches its
basename, it gets 300 extra credits, and, if this directory is in addition bookmarked, pinned, and marked as
permanent, it gets 1800 extra credits. In this way the total rank of this directory in the matching process is
2900. In doing so, we have more chances of matching what the user actually wanted to match.

Once all entries in the initial list of matches have been filtered via the above procedure and ranked, we can
return the best ranked entry. The higher rank a directory has, the more priority it has over the remaining en-
tries in the initial list of matches.

Automatic maintenance is done on the database applying a few simple procedures:

a) If PurgeJumpDB is set to true (see the main configuration file), each entry in the database is checked at
startup to remove non-existent directories. This option is set to false by default to avoid removing paths
pointing to unmounted filesystems (like removable devices or remote locations) which you still might want
to keep. Non-existent directories, however, will be removed soon or later anyway due to their low rank
value (see below).

b) Once the rank of a directory falls below MinJumpRank (by default 10), it is forgotten and deleted from
the database. The MinJumpRank value can be customized in the configuration file. To make non-fre-
quently visited directories disappear quicker from the database, increase this value. If set to 0, by contrast,
directories will never be removed from the database.

c) Once the sum total of ranks reaches MaxJumpTotalRank (by default 100000), each individual rank is
divided by a dynamic factor so that the total rank becomes less than or equal to MaxJumpTotalRank. If
some rank falls in the process below MinJumpRank (and provided this latter is not 0), it is removed from
the database. MaxJumpTotalRank can be modified in the configuration file. The higher the value of
MaxJumpTotalRank, the more time directories will be kept in the database.

Note: Directories visited in the last 24 hours, just as pinned, bookmarked directories, and directories cur-
rently used in some workspace, will not be removed from the database, no matter what their rank is. In
other words, if you want to indefinitely keep a given directory in the jump database, bookmark it, or mark it
as permanent (edit the database, via ‘je‘ or ‘j --edit‘, and prepend a plus sign (+) to the corresponding en-
try).

The idea of ’frecency’ was, as far as I know, first devised and designed by Mozilla. See
https://wiki.mozilla.org/User:Mconnor/Past/PlacesFrecency. However, it is also implemented, though using
different algorithms, by different projects like autojump, z.lua, and zoxide.

20. ENVIRONMENT
The following variables are read at initialization time:

NO_COLOR
If set to any value, clifm will run without colors.

CLIFM_NO_COLOR
Same as NO_COLOR, but specific to clifm.

clifm 1.25 Apr 30, 2025 64

CLIFM(1) Clifm Manual CLIFM(1)

CLICOLOR_FORCE
Force the use of colors, even if the terminal does not report color support.

CLIFM_FORCE_COLOR
Same as CLICOLOR_FORCE, but accepts a specific color value (8, 16, 256, truecolor or 24bit).

COLORTERM
If set to either truecolor or 24bit, clifm assumes the terminal emulator to be capable of displaying
true colors (and thereby also 256 colors), despite what the terminfo(5) database reports.

CLIFM_FILE_COLORS
A colon separated list of file type color codes in the same form specified above in the COLOR
CODES section.

CLIFM_EXT_COLORS
Same as above, but for file extensions.

CLIFM_IFACE_COLORS
Same as above, but for different elements of clifm’s interface.

CLIFM_DATE_SHADES
A comma separated list of colors used to print timestamps based on age.

CLIFM_SIZE_SHADES
Same as CLIFM_DATE_SHADES, but for file sizes.

CLIFM_PREVIEW_MAX_SIZE
If running with --preview, or PreviewMaxSize is not set in the configuration file, no preview is
generated for files larger that this value. The value must be specified in KiB: for example, 2048 is
read as 2 MiB.

CLIFM_TEMPLATES_DIR
A custom file templates directory.

CLIFM_HISTFILE
A custom commands history file.

CLIFM_FILTER
Define a file filter. If set, this variable overrides the Filter option in the configuration file.

CLIFM_SUDO_CMD
Name of the authenticator program. Used by the X command (to launch a new instance of clifm as
root), the Alt+v keybinding (to prepend the authenticator program name to the current command
line), and for some operations on archives (ISO files). Defaults to sudo (or doas if compiled on
OpenBSD). Example: ‘CLIFM_SUDO_CMD=doas clifm‘.

SHELL
An absolute path to the shell to be used by clifm to run external commands. Only values found in
/etc/shells are allowed.

CLIFM_SHELL
Same as SHELL, but specific to clifm (takes precedence over SHELL).

TMPDIR
Path to a directory where temporary files will be created.

CLIFM_TMPDIR
Same as TMPDIR, but specific to clifm (takes precedence over TMPDIR).

TERM
Terminal type for which output is to be prepared.

FZF_DEFAULT_OPTS
A quoted list of options to be passed to fzf (if used for tab completion).

clifm 1.25 Apr 30, 2025 65

CLIFM(1) Clifm Manual CLIFM(1)

TIME_STYLE
If set from neither --time-style nor TimeStyle (in the configuration file), use this time style for
the long view.

CLIFM_TIME_STYLE
Same as TIME_STYLE, but specific to clifm (takes precedence over TIME_STYLE).

PTIME_STYLE
If set from neither --ptime-style nor PTimeStyle (in the configuration file), use this time style
for the p/pp command and the --stat/--stat-full command line switches.

CLIFM_COLUMNS
The number of terminal columns.

CLIFM_LINES
The number of terminal lines.

CLIFM_MIMETYPES_FILE
Set a custom mime.types file (instead of the default, ˜/.mime.types). Consult the FILE OPENER
section form more information.

Except when running in stealth mode, clifm sets the following environment variables:

CLIFM
Path to the configuration directory. By inspecting this variable other programs can find out if they
were spawned by clifm. It can also be used to quickly jump to the configuration directory: ‘cd
$CLIFM‘ or just ‘$CLIFM‘.

CLIFMRC
Path to the main configuration file (by default ˜/.config/clifm/profiles/default/clifmrc).

CLIFM_PID
PID number of clifm’s running instance.

CLIFM_VERSION
Version number of clifm’s running instance.

CLIFM_VIRTUAL_DIR
Path to the currently used virtual directory only if (and while) the virtual directory function is ex-
ectued. See the VIRTUAL DIRECTORIES section above.

SHLVL
Incremented by one each time a new shell is started.

CLIFMLVL
Same as SHLVL, but specific to clifm.

If Notifications is set to false for the current prompt, the following variables are exported to the environ-
ment to be used, if needed, by your custom prompt:

CLIFM_STAT_SEL
Current number of selected files.

CLIFM_STAT_TRASH
Current number of trashed files.

CLIFM_STAT_ERROR_MSGS
Current number of error messages.

CLIFM_STAT_WARNING_MSGS
Current number of warning messages.

CLIFM_STAT_NOTICE_MSGS
Current number of notice messages.

clifm 1.25 Apr 30, 2025 66

CLIFM(1) Clifm Manual CLIFM(1)

CLIFM_STAT_WS
Current workspace number.

CLIFM_STAT_EXIT
Exit code of the last executed command.

CLIFM_STAT_ROOT
1 if user is root (UID = 0), 0 otherwise.

CLIFM_STAT_STEALTH
1 if running in stealth mode, 0 otherwise.

When running a plugin, the following environment variables are set:

CLIFM_BUS
The path to a pipe by means of which plugins can talk to clifm. See the PLUGINS section for
more information.

CLIFM_COLOR_SCHEME
Set to the name of the current color scheme.

CLIFM_COLORLESS
Set to 1 if running without colors.

CLIFM_CUR_WS
Set to the current workspace number.

CLIFM_DIRS_FIRST
Set to 1 if list-dirs-first is enabled. Otherwise it is set to 0.

CLIFM_FILES_COUNTER
Set to 1 if files-counter is enabled. Otherwise it is set to 0.

CLIFM_FILES_FILTER
Set to the files filter string. Unset if no files filter is set.

CLIFM_FILTER_REVERSE
Set to 1 if filter-reverse is set or to 0 otherwise (unset if no files filter is set).

CLIFM_FOLLOW_LINKS
Set to 1 if follow-symlinks is enabled. Otherwise it is set to 0.

CLIFM_LIGHT_MODE
Set to 1 if light-mode is enabled. Otherwise it is set to 0.

CLIFM_LINE
When running a plugin via a keybinding, this variable holds the content of the current line buffer.
For a usage example see the xclip.sh plugin.

CLIFM_LONG_VIEW
Set to 1 if long-view is enabled. Otherwise it is set to 0.

CLIFM_MAX_FILES
Set to MAX_FILES if max-files is set. Unset otherwise.

CLIFM_ONLY_DIRS
Set to 1 if only-dirs is enabled. Otherwise it is set to 0.

CLIFM_PLUGINS_HELPER
Set to the absolute path to the plugins-helper script used by several plugins.

CLIFM_PROFILE
Set to the name of the current profile.

CLIFM_SEL_FILES
Set to the number of currently selected files (unset if there are no selected files).

clifm 1.25 Apr 30, 2025 67

CLIFM(1) Clifm Manual CLIFM(1)

CLIFM_SELFILE
Set to the path to the current selection file.

CLIFM_SHOW_HIDDEN
Set to 1-3 if show-hidden is enabled (true, first, last, in this order). Otherwise it is set to 0.

CLIFM_SORT_REVERSE
Set to 1 if sort-reverse is enabled. Otherwise it is set to 0.

CLIFM_SORT_STYLE
Set to the current sort method.

CLIFM_TRASH_FILES
Set to the number of currently trashed files (unset if there are no trashed files).

CLIFM_TRUNCATE_NAMES
Set to 1 if truncate-names is enabled. Otherwise it is set to 0.

21. SECURITY
Since clifm executes OS commands, it needs to provide a way to securely run these commands, specially
when it comes to untrusted environments. Two features are provided to achieve this aim: secure environ-
ment and secure commands.

Both features are aimed at protecting the program and the system as such from malicious input, either com-
ing from environment variables or from indirect input, that is to say, input coming not from the command
line (in which is assumed that it is the user herself who is executing the given command), but from files:
this is the case of default associated applications (the mime command), autocommands, aliases, plugins,
(un)mount commands (using the net command), just as profile and prompt commands.

In an untrusted environment, an attacker could cause unexpected and insecure behavior (even command in-
jection) using environment variables, or inject malicious commands via indirect input, commands which
will be later executed by clifm without the user’s consent (i.e. automatically). This is why we provide a
mechanism to minimize this danger: if running in an untrusted environment, the secure environment and se-
cure commands features are there to prevent (at least as far as possible) this kind of attacks.

A) Secure environment

Programs inherit the environment from the parent process. However, if this inherited environment is not
trusted, not secure, it is always a good idea to sanitize it using only sane values, preventing thus undesired
and uncontrolled input that might endanger the program and the system itself.

The secure-environment function forces clifm to run on a such a sanitized environment.

There are two secure-environment modes, the regular, and the full one. To enable the regular mode, run
clifm with the --secure-env command line option. Otherwise, enable the full mode using --se-
cure-env-full.

a) Regular: in this mode, the inherited environment is cleared, though a few variables are preserved to keep
clifm running as stable as possible. These preserved variables are: TERM, DISPLAY, LANG, TZ, and, if
fzf tab completion mode is enabled, FZF_DEFAULT_OPTS.

The following variables are set in an environment agnostic way (that is, securely):
- HOME, SHELL, and USER are retrieved using getpwuid(3)
- PATH is set consulting _PATH_STDPATH (or _CS_PATH if the former is not available)
- IFS is set to a sane, hard-coded value: " \n\t" (space, new line char, and horizontal TAB)

As a plus, 1) core dumps are disabled, 2) the umask value is set to 0077 at startup and the creation mode
(when using the new command) is forced to 0700 for directories and 0600 for files, 3) non-standard file de-
scriptors (>2) are closed, 4) SUID/SGID privileges, if any, are dropped, and 5) autocommand files are not
read at all (even if ReadAutocmdFiles is set to true).

clifm 1.25 Apr 30, 2025 68

CLIFM(1) Clifm Manual CLIFM(1)

b) Full: this mode is just like the regular mode, except that nothing is imported from the environment at all
and only PATH, HOME, USER, SHELL, and IFS are set (as described above). Everything else remains
unset, and is the user’s responsibility to set environment variables (via the export function), as needed. In
this case, you might want to set, at least, TERM, and, if running in a graphical environment, DISPLAY.

Be aware that enabling secure-environment might break some functions, depending on the system configu-
ration.

B) Secure commands

Some commands are automatically executed by clifm: (un)mount commands (via the net command), open-
ing applications (via Lira), aliases, and plugins, just as prompt, profile, and autocommands. These com-
mands are read from a configuration file and then executed. Now, if an attacker has access to any of these
files, she might force clifm to run any arbitrary command, and thereby possibly exposing the whole system.

Every time a command is thus automatically executed via the system shell (i.e. without the user’s direct
consent), the secure commands function performs four different, though intrinsically related tasks aimed to
mitigate command injection and/or unexpected behavior:

a) Plugins are disabled.

b) Only command base names are allowed: nano, for instance, is allowed, while /usr/bin/nano is not. In this
way we can guarantee that only commands found in a sanitized PATH (see the point d below) will be exe-
cuted. This is done in order to prevent the execution of custom binaries/scripts, for example: /tmp/exec_file.

c) Commands are validated using a whitelist of safe characters (mostly to prevent stream redirection, con-
ditional execution, and so on, for example, ’your_command;some_injected_command’). This set of safe
characters slightly vary depending on the command being executed (because they use different syntaxes):

Net command: a-zA-Z -_.,/=
Prompt, profile, autocommands: a-zA-Z -_.,/"’
Mime command: a-zA-Z -_.,%&

Commands containing at least one unsafe character will be rejected. Of course, we cannot (and should not)
prevent what looks like legitimate, benign commands from being executed. But we can stop commands
that, in an untrusted environment, look suspicious. This is specially the case of stream redirection (>), pipes
(|), sequential (;) and conditional execution (&&, ||), command substitution ($(cmd)), and environment vari-
ables ($VAR).

d) A secure environment is set (--secure-env is implied; to run on a fully sanitized environment run as
follows: --secure-cmds --secure-env-full.

22. MISCELLANEOUS NOTES
Sequential and conditional execution of commands:

For each of the internal commands (see the COMMANDS section above) you can use the semicolon to ex-
ecute them sequentially and/or the double ampersand to execute them conditionally. For example:
‘cmd1; cmd2 && cmd3‘.

Though you can use here external commands as well, bear in mind that, whenever at least one internal com-
mand is involved in a chained list of commands, clifm will take care of executing this list (simply because
the system shell is not able to understand any of these commands), so that no shell inter-process function
(like pipes), nor any stream redirection or shell expression (like IF blocks or FOR loops) will be available.
However, the shell is still used to run single external commands found in the chained list, but in isolation
from the remaining commands in this list.

As a rule of thumb, when using chained commands make sure to always expand ELNs to avoid undesired
consequences. If, for instance, you issue this command: ‘touch aaa && r 3‘, you will end up deleting a file
you were not intended to delete, simple because after the successful execution of the first command, the

clifm 1.25 Apr 30, 2025 69

CLIFM(1) Clifm Manual CLIFM(1)

ELN 3 corresponds now to a different file.

External commands:

Clifm is not limited to its own set of internal commands, like open, sel, trash, etc. It can run external com-
mands as well, provided external commands are allowed (see the -x option, the ext command, and the Ex-
ternalCommands option in the configuration file).

External commands are executed using the system shell (say, /bin/sh), which is specified by clifm as fol-
lows:
1. If the CLIFM_SHELL environment variable is set, this value is used.
2. If the SHELL environment variable is set, this value is used.
3. If none of the above, the value is taken from the passwd database (via getpwuid(3)).

The shell is invoked as follows: SHELL -c ’CMD ARG...’, for example, ‘/bin/sh -c ’ls -l’‘.

By beginning the external command by a colon or a semicolon (’:’, ’;’) you tell clifm not to parse the input
string, but instead letting this task to the system shell.

Bear in mind that clifm is not intended to be used as a shell, but as the file manager it is.

Terminal emulators and non-ASCII characters:

It depends on the terminal emulator you use to correctly display non-ASCII characters and characters from
the extended ASCII charset. If, for example, you create a filenamed "ñandú" (the Spanish word for ´rhea´),
it will be correctly displayed by the Linux console, Lxterminal, and Urxvt, but not thus by more basic ter-
minal emulators like Aterm.

Spaces and filenames:

When dealing with filenames containing spaces, you can use both single and double quotes (e.g.: "this file"
or ’this file’) plus the backslash character (e.g.: this\ file).

Default profile:

Clifm’s default profile is default. To create alternative profiles use the -P command line option or the ‘pf
add‘ command (see above).

23. FILES
CONFIGURATION FILE

The main configuration file is looked up in these places (and in this order):

1. -c,--config-file switch
2. $CLIFMRC variable
3. $XDG_CONFIG_HOME/clifm/profiles/PROFILE/clifmrc directory

If $XDG_CONFIG_HOME is not set, $HOME/.config is used instead. If running with secure-en-
vironment (using either --secure-cmds, --secure-env, or --secure-env-full) no environment
variable is read, so that the home directory is taken instead from the password database (via getp-
wuid(3)).

clifm 1.25 Apr 30, 2025 70

CLIFM(1) Clifm Manual CLIFM(1)

PROFILE is by default default (unless set via -P,--profile).

You can access the configuration file either via the config command or pressing F10.

A description for each option in the configuration file can be found in the configuration file itself.

PROFILE FILE
The profile file is $XDG_CONFIG_HOME/clifm/profiles/PROFILE/profile.clifm. In this file you
can add those commands you want to be executed at startup. You can also permanently set here
some custom variables, e.g.: ’dir="/path/to/dir"’. This variable may be used as a shortcut to that di-
rectory, for instance: ‘cd $dir‘. Custom variables can also be temporarily defined in the command
prompt: E.g.: user@hostname ˜ $ var="This is a test". Temporary variables will be removed at pro-
gram exit. Internal variables are disabled by default; enable them using the --int-vars command
line switch.

PROMPTS FILE
This file contains prompts definitions and is located in DATADIR/clifm/prompts.clifm. It will be
copied automatically to $XDG_CONFIG_HOME/clifm/prompts.clifm if it doesn’t exist. The
Prompt line in the color scheme file should point to one of the prompt names defined in this file.
See the PROMPT section for more information.

KEYBINDINGS FILE
The keybindings file is $XDG_CONFIG_HOME/clifm/keybindings,cfm. It will be copied from
DATADIR/clifm (usually /usr/share/clifm), and if not found, it will be created anew with default
values. This file is used to specify the keyboard shortcuts used for some ClifM’s functions. The
format for each keybinding is always "keyseq:function", where ’keyseq’ is an escape sequence in
GNU emacs style. A more detailed explanation can be found in the keybindings file itself.

PLUGINS DIRECTORY
The directory used to store programs or scripts pointed to by actions (in other words, plugins) is
DATADIR/clifm/plugins (usually /usr/share/clifm/plugins). To edit these plugins copy them to
$XDG_CONFIG_HOME/clifm/plugins and edit them to your liking. Plugins in this local directory
take precedence over those in the system one.

COLORS DIRECTORY
This directory, $DATADIR/clifm/colors, contains available color schemes (or just themes) as files
with a .clifm extension. You can copy these themes to the local colors directory ($XDG_CON-
FIG_HOME/clifm/colors) and edit them to your liking (or create new themes from the ground up).
Themes in the local colors directory take precedence over those in the system directory. You can
create as many themes as you want by dropping them into the local colors directory. The default
color scheme file (default.clifm) can be used as a guide.

ACTIONS FILE
The file used to define custom actions is $XDG_CONFIG_HOME/clifm/profiles/PROFILE/ac-
tions.clifm. It will be copied from DATADIR/clifm (usually /usr/share/clifm), and if not found, it
will be created anew with default values.

MIMELIST FILE
The mimelist file is $XDG_CONFIG_HOME/clifm/profiles/PROFILE/mimelist.clifm. It is a list of
file types and name/extensions and their associated applications used by lira. It will be copied
from DATADIR/clifm (usually /usr/share/clifm).

PREVIEW FILE
The preview file is $XDG_CONFIG_HOME/clifm/profiles/PROFILE/preview.clifm and is shot-
gun’s configuration file. It makes use of the same syntax used by the mimelist file. It will be copied
from DATADIR/clifm (usually /usr/share/clifm).

BOOKMARKS FILE
The bookmarks file is $XDG_CONFIG_HOME/clifm/profiles/PROFILE/bookmarks.clifm Just the
list of the user’s bookmarks used by the bookmarks function.

clifm 1.25 Apr 30, 2025 71

CLIFM(1) Clifm Manual CLIFM(1)

HISTORY FILE
The history file is ˜/.config/clifm/profiles/PROFILE/history.clifm. A list of commands entered by
the user and used by the history function.

COMMANDS LOG FILE
The commands log file is $XDG_CONFIG_HOME/clifm/profiles/PROFILE/cmdlogs.clifm. Com-
mand logs keep track of commands entered in the command line. These logs have this form:
"[date] current_working_directory:command".

MESSAGES LOG FILE
The messages log file is $XDG_CONFIG_HOME/clifm/profiles/PROFILE/msglogs.clifm. Message
logs are a record of errors and warnings and have the following form: "[date] message".

KANGAROO DATABASE
The directory jumper database is stored in $XDG_CONFIG_HOME/clifm/profiles/PRO-
FILE/jump.clifm.

Note: If $XDG_CONFIG_HOME is not set, $HOME/.config/ is used instead.

24. EXAMPLES
Note 1: Always try TAB. Tab completion is available for many things.

Note 2: Suggestions for possible completions are printed next to the text typed so far. To accept the given
suggestion press Right (or Alt+f to accept only the first/next suggested word). Otherwise, the suggestion is
just ignored.

Get help: F1: manpage F2: keybindings F3: commands

1. NAVIGATION

Command Description
Change directory to /etc (1)/etc

Change to the directory whose ELN is 5 (2)5

Navigate through visited directoriesj <TAB> (also dh <TAB>)

Jump to ˜/media/data/docs/work/mike/xproject (3)j xproj

Go back in the directory history listb (Shift+Left, Alt+j)

Go forth in the directory history listf (Shift+Right, Alt+k)

Change to the parent directory.. (Shift+Up, Alt+u)

Change to the parent directory of the current parent directory (4)...

Change to the parent directory matching "w" (5)bd w

Switch to the second workspace (6)ws2 (Alt+2)

List PDF files (current dir)/*.pdf<TAB>

List executable files (current dir) (7)=x<TAB>

List files (current dir) whose MIME type includes "gzip"@gzip<TAB>

Pin the directory named mydirpin mydir

Change to pinned directory,

Preview files (current dir) (8)view (Alt+-)

Run MAS, the file pager, on the current directorypg (Alt+0)

(1) ‘cd /etc‘ also works
(2) Press TAB to make sure 5 is the file you want, or just pay attention to the suggestion. Press Right to ac-
cept the given suggestion

clifm 1.25 Apr 30, 2025 72

CLIFM(1) Clifm Manual CLIFM(1)

(3) This depends on the database ranking. For more accuracy: ‘j mike xproj‘. Tab completion is available:
‘j xproj<TAB>‘
(4) This is the fastback function: each susequent dot after the two first dots is understood as an extra "/.."
(5) Type ‘bd <TAB>‘ to list all parent directories
(6) Alt+[1-4] is available for workspaces 1-4
(7) Type ‘=<TAB>‘ to get the list of available file type characters. Consult the FILE FILTERS section
above for more information
(8) This feature depends on fzf(1)

2. FILE OPERATIONS

Command Description
Open myfile.txt (with the default associated application)myfile.txt

Open myfile.txt using vi (1)myfile.txt vi

Open the file whose ELN is 24 in the background24&

Create a new file named myfile and a new directory named mydir (2)(3)n myfile mydir/

Print the properties of the file whose ELN is 4p4

Edit the permission set of the file myfile.txt (use oc to edit ownership)pc myfile.txt

Select all c files in the current directorys *.c

Interactively select files in the directory /media (4)s /media/*<TAB>

Select multiple files in the current directory by ELNs 1-4 8 19-26

List selected files (5)sb (sel<TAB> or s:<TAB>)

Selectively deselect files using a menuds (ds <TAB>)

Bookmark the directory mydir/ as mybmbm add mydir/ mybm

Access the bookmark named mybm (6)bm mybm (b:mybm)

Remove the bookmark named mybmbm del mybm

Open the bookmark managerbm (Alt+b or b:<TAB>)

Trash a few filest 1-3 *.old

Selectively restore trashed files using a menuu (u <TAB>)

Selectively remove files from the trash can using a menut del (t del <TAB>)

Empty the trash cant empty

Tag all PDF files in the current directory as mypdfsta *.pdf :mypdfs

Print the file properties of all files tagged as mypdfsp t:mypdfs

Search for all PDF files in the current directory/*.pdf

Copy selected files to the current directoryc sel

Copy all txt file to the directory whose ELN is 2c *.txt 2

Remove all selected files (7)r sel

Rename the file whose ELN is 4 (8)m4

(1) Use the ow command to select the opening application from a menu: ‘ow myfile.txt‘ or ‘ow myfile.txt
<TAB>‘
(2) Note the ending slash in the directory name
(3) Since clifm is integrated to the system shell, you can also use any of the shell commands you usually
use to create new files. E.g.: ‘touch myfile‘ or ‘nano myfile‘
(4) Only for non-standard tab completion: fzf, fnf, smenu
(5) You can also TAB expand the sel keyword: ‘p sel<TAB>‘ to list selected files (and optionally mark
multiple selected files to operate on)
(6) Type ‘bm <TAB>‘ to get the list of available bookmark names
(7) To remove files in bulk use the rr command

clifm 1.25 Apr 30, 2025 73

CLIFM(1) Clifm Manual CLIFM(1)

(8) To rename files in bulk use the br command

3. MISC

Command Description
Toggle hidden fileshh (Alt+.)

Toggle long-viewll (Alt+l)

Clear/refresh the screenrf (Enter -on empty line- or Ctrl+l)

Toggle list-directories-onlyAlt+,

Toggle disk usage analyzer modeAlt+Tab, Ctrl+Alt+i

Navigate through the command history!<TAB>

View/edit the main configuration fileconfig (F10)

Change to profile testpf set test

List available actions/pluginsactions

Want icons?icons on

List available color schemescs (cs <TAB>)

List available promptsprompt (prompt <TAB>)

I´m tired, quitq

There is a lot more you can do, but this should be enough to get you started.

EXIT STATUS
Clifm returns the exit status of the last executed command

CONFORMING TO
Clifm is C99 compliant, and, if compiled with the _BE_POSIX flag, it is POSIX.1-2008 compliant as
well. If not, just a single non-POSIX function is used: statx(2) (Linux specific), to get files birth time.

BUG AND FEATURE REQUESTS
Report at <https://github.com/leo\-arch/clifm/issues>

AUTHOR
L. M. Abramovich <leo.clifm@outlook.com>

For additional contributors, run ‘git shortlog -s‘ on the clifm.git repository.

clifm 1.25 Apr 30, 2025 74

	CLIFM(1)
	NAME
	SYNOPSIS
	INDEX
	1. GETTING HELP
	2. DESCRIPTION
	3. PARAMETERS
	POSITIONAL PARAMETERS
	OPTIONS
	4. COMMANDS
	5. FILE FILTERS
	6. KEYBOARD SHORTCUTS
	7. THEMING
	8. BUILTIN EXPANSIONS
	10. FILE OPENER
	11. SHOTGUN
	12. AUTOSUGGESTIONS
	13. SHELL FUNCTIONS
	14. PLUGINS
	15. AUTOCOMMANDS
	16. FILE TAGS
	17. VIRTUAL DIRECTORIES
	18. NOTE ON SPEED
	19. KANGAROO FRECENCY ALGORITHM
	20. ENVIRONMENT
	21. SECURITY
	22. MISCELLANEOUS NOTES
	23. FILES
	HISTORY FILE
	24. EXAMPLES
	EXIT STATUS
	CONFORMING TO
	BUG AND FEATURE REQUESTS
	AUTHOR

